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Preface

This book is targeted towards computer science students who are completely
new to the topic of automated negotiation. It does not require any prerequi-
site knowledge, except for elementary mathematics and basic programming
skills. I have made this book available for free, so feel free to share it with
anyone you like.

Please note that this book is meant as an organic document that keeps
expanding over time. Therefore, I recommend to regularly check the website
of this book to see if there is any updated version available.

This book comes with an simple toy-world negotiation framework imple-
mented in Python that can be used by the readers to implement their own
negotiation algorithms and perform experiments with them. This frame-
work is small and simple enough that any reader who does not like to work
in Python should be able to re-implement it very quickly in any other pro-
gramming language of their choice. It can be downloaded from the website
of this book:

https://www.iiia.csic.es/~davedejonge/intro_to_nego

If you have any questions or comments on this book, please send me an
e-mail: davedejonge@iiia.csic.es. I am more than happy to hear your
suggestions so that I can improve this work. Especially, if you feel that
something is not clearly explained, or that something important is missing,
please let me know!
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Chapter 1

Introduction

1.1 Characteristics of Negotiation

Whenever we talk about ‘negotiation’ we are referring to any form of commu-
nication between multiple ‘agents’ (which can be either humans or software)
with the goal of coordinating their actions, so that they can achieve a better
outcome for themselves than what they could possibly achieve without such
coordination.

A simple example is the scenario of a group of friends that want to go
to the cinema together. In order to achieve that goal, they have to make a
number of decisions together: which cinema to go to, which movie to watch,
and at what time. If they do not manage to come to an agreement on all
these decisions, then they will not be able to go to the cinema together.
Clearly, coordination is essential to achieve the desired outcome.

In particular, we say that agents are negotiating whenever the following
conditions are satisfied:

1. There is more than one agent.

2. These agents are able to communicate with each other.

3. The agents need to make one or more choices out of a number of
options.

4. Each agent has its own individual preferences over the options.

5. Each agent is autonomous.

The need for the first three of these conditions should be obvious. The
fourth assumption is essential, because if an agent does not have its own
preferences, then it would not have any reason to participate in the nego-
tiations. It could simply let all the other agents make the decision. Note
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8 CHAPTER 1. INTRODUCTION

however, that this does not mean their preferences need to be different. For
example, suppose two friends called Alice and Bob want to choose a movie
to watch together. Even if they each want to see the same movie, they may
still need to communicate this preference to one another in order to ensure
that they are each aware of this fact. For example, Alice could propose to
Bob to see The Godfather, and then Bob could accept that proposal. In
other words, they still need a short negotiation, to establish their decision.
The key point here, is that the two agents a priori do not know that their
preferences are the same.

Nevertheless, in the rest of this book we will almost always assume that
there is some amount of conflict among the agents. After all, a scenario in
which all agents exactly agree on their preferences is not a very interesting
test case for scientific research. A commonly used example of a scenario
in which two negotiators have conflicting interests, is the case of a buyer
and a seller that are negotiating the price of a car. In this case the agents’
preferences are diametrically opposed: the seller wants to sell the car for
the highest possible price, while the buyer wants to buy it for the lowest
possible price. Despite their conflicting interests, the two agents still aim to
find a compromise that is acceptable to each of them individually and that
they each prefer over the situation that the car is not sold at all.

The fifth assumption means that each agent has at least some partial
freedom to do whatever it wants. If one of the agents does not have any
such freedom at all, then it would mean that that agent would essentially
be a slave to the others and it would not have any negotiation power. For
example, a car seller cannot force the buyer to buy the car. The buyer has
the autonomy to refuse any offer he or she doesn’t like. Similarly, the buyer
cannot force the seller to sell the car either. The seller too has the autonomy
to reject any offer from the buyer.

As a counter example, we can imagine a swarm of robots that are search-
ing through the ruins of a collapsed building in order to find survivors. If
these robots are fully controlled by a central computer, then there is no need
for negotiation. The central computer simply dictates what all the robots
should do.

It should be noted that there are many situations in daily life in which
the above conditions hold, and therefore can be seen as a type of negotia-
tion, even though we normally wouldn’t think of them as a negotiation. In
fact, any time two or more people make a joint decision, it is essentially a
negotiation. So, whenever you ask someone a question like “shall we eat at
19:00?” or “Do you want to go the cinema?” you are essentially starting a
negotiation.
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Another nice example of a negotiation scenario that we typically do not
think of as a negotiation, is when you do your groceries at the supermar-
ket. In this scenario there are indeed multiple agents, namely the customer
and the supermarket. These two agents jointly aim to come to an agree-
ment about which products the supermarket will sell to the user. Each of
these agents has a certain amount of autonomy: the supermarket can choose
which products it offers and for what price. The customer, on the other had,
can choose which of those products he or she will buy. Furthermore, each
agent has their own preferences: the supermarket aims to make the high-
est possible financial profit, while the customer has preferences over which
products he or she wants to buy, and prefers to buy them for the lowest
possible price. The least obvious requirement, is perhaps the requirement of
communication, as it might not be obvious at first sight that the two agents
are indeed communicating. However, the supermarket is communicating to
the customer by means of labels and price tags on their products. Every
time the costumer sees a label saying something like “1 kg of beef, $6” this
can be seen as a proposal made by the supermarket to the customer. The
customer can then either accept that proposal by taking the product from
the shelf and adding it to their shopping cart, or reject it by walking along
without taking the product. This is, essentially, a form of negotiation. Of
course, it is a somewhat limited form of negotiation since the supermarket
is the only agent here that can make proposals, while the customer can only
accept or reject those proposals, but cannot make any counter-proposals to
the supermarket.

In the literature one sometimes distinguishes between negotiation and
bargaining. The exact definitions differ per author, where ‘bargaining’ is
often used exclusively to refer to the exchange of proposals that can be ac-
cepted or rejected, while ‘negotiation’ often refers to a more general process
in which the agents may use a broader form of communication that allows
them to express their respective interests, or allows them to convince the
other agents to change their points of view. In the rest of this book, however,
we will not distinguish between the two concepts and simply always use the
term ‘negotiation’ even were some authors might argue that ‘bargaining’
would be the more appropriate term.

1.2 History of Automated Negotiation

Of course, in this book we are not just interested in negotiation, but rather
in automated negotiation. That is, the study of how to develop computer
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programs that can perform negotiations autonomously, either with other
computer programs or with humans (although in this book we will focus
mainly on negotiations between computers only).

The topic of automated negotiation dates back to the 1950’s, starting
with the work of John Nash [35]. Back in those days, however, automated ne-
gotiation was mainly studied from a purely theoretical point of view, rather
than from an algorithmic point of view. The typical approach followed by
Nash and other researchers of his time, would be to argue that the outcome
of a certain negotiation scenario should satisfy a certain set of mathematical
axioms. They would then formally prove that there exists a unique outcome
satisfying those axioms. Several different solution concepts were proposed
in this way, based on different sets of axioms [28, 25, 13].

This changed in 1998 with the seminal paper by Faratin et al. [22].
Rather then trying to find theoretically optimal outcomes, they took a more
practical approach and proposed a number of possible negotiation strategies,
which we will discuss in Chapter 3. This was a great step forwards towards
realistic applications of automated negotiation, because it takes into account
that real agents would typically would not have complete domain knowledge
and would not be willing to share strategic information with each other.

Another pivotal event in the history of automated negotiation was the
inception of the Automated Negotiating Agents Competition (ANAC) in
2010 [9] and the development of the Genius framework [30] on which ANAC
was run. Since then, ANAC has been held almost every year at major A.I.
conferences such as IJCAI and AAMAS and has greatly boosted the number
of papers published on the topic of automated negotiation. Furthermore,
ANAC has led to to the development of hundreds of negotiating agents and
a plethora of different opponent modeling techniques, which are still used by
many researchers as a baseline against which they can test new negotiation
algorithms.

Initially, most research on automated negotiation focused on the most
basic type of negotiations with two agents negotiating over a small set of
possible agreements with linear utility functions [9]. However, over the years,
more and more researchers have started investigating more complex nego-
tiation scenarios. For example, several researchers have studied negotiation
domains with with non-linear utility functions and with an extremely large
number of possible agreements [27, 31]. This was even taken a step further
by considering domains in which the calculation of the utility of just a single
proposal is already computationally complex problem [19, 20, 18].

Other researchers have focused on multi-lateral negotiations (negotia-
tions between 3 or more agents) [36, 21, 19, 4], or the use of machine learn-
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ing algorithms such as deep learning and reinforcement learning to train
negotiation algorithms [40, 10].

Most of these developments have also been closely mirrored by the vari-
ous editions of ANAC. For example, ANAC 2014 involved negotiations with
non-linear utility functions and extremely large search spaces [24], while
from 2015 to 2018 ANAC focused on multi-lateral negotiations[23]. Then,
in 2019 and 2020 the focus shifted back to small, bilateral negotiations,
but in which each agent only had partial knowledge about its own utility
function [3]. After that, several editions focused on the use of machine
learning to allow the agents to learn the characteristics of their opponents,
from earlier negotiations [37]. Furthermore, from 2017 onward the ANAC
competition was divided into a ‘main league’ and one or more sub-leagues
focusing on more specialized negotiation problems, such as high computa-
tional complexity in the game of Diplomacy [16], multi-lateral negotiations
in a supply-chain environment [33] negotiations between computers and hu-
mans [32], and negotiations in the game of Werewolves [3].

For a long time, the Genius framework, which was written in Java, was
the main platform that researchers used for their experiments in the field of
automated negotiation. It was especially useful because it included a large
set of hand-crafted test-domains that were used in the ANAC competitions
and a large set of agents that participated in those competitions. This
immediately gave researchers access to a vast library of benchmark test
cases and baseline algorithms for their experiments.

However, it has recently been shown, both experimentally [14] and the-
oretically [15], that a very simple negotiation strategy called MiCRO is able
to achieve near-optimal results on the Genius test domains even without
using any form of machine learning or opponent modeling. It was therefore
argued that those hand-crafted test cases should no longer be used.

The Genius framework is no longer maintained, and has now been super-
seded by the NegMas framework [34] as the main platform for research on
automated negotiation. It is written in Python, but it still includes the pos-
sibility to run the Java agents from the Genius framework. Furthermore, it
allows generating random test domains which are harder to tackle than the
hand-crafted ones from Genius. Another framework, called GeniusWeb, was
also developed by the makers of Genius, but this framework never gained
much traction.
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Chapter 2

Basic Negotiations

In this chapter we discuss the basic ideas of automated negotiation. For
now we will focus mainly on bilateral negotiation. That is, negotiations
between exactly two agents, as opposed to multilateral negotiation, which
takes place between more than two agents. The only exception is that some
of the mathematical definitions below will be given for arbitrary numbers
of agents, because it would not simplify anything if we presented them for
only two agents.

We here focus on bilateral negotiation because they are the simplest
to explain, because they have been studied much more extensively in the
literature and because they are sufficient to explain the most basic aspects
of automated negotiation. We will discuss multilateral negotiations later on
in Chapter 7.1.

2.1 Informal Description

Imagine there are two agents, which we will call the ‘buyer’ and the ‘seller’
respectively, that are negotiating the price of a second-hand car. The ne-
gotiations start with one agent proposing an offer to the other agent. For
example, the seller might start by proposing a price of $10,000. Next, the
buyer can do two things: to accept the proposal, or to reject it. If the buyer
accepts the proposal, then then it becomes a formally binding agreement
and the negotiations are over. Otherwise, if she rejects the proposal, then
she can make a counter-proposal. For example, she might propose a price
of $5,000. Next, it is again the seller’s turn. The seller now also has the
choice between accepting the last proposal, or rejecting it and making a new
proposal. For example, she could then propose a price of $9,500. This will
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continue until they come to an agreement, or one of the agents decides to
withdraw from the negotiations, or a given deadline has passed, or when a
fixed maximum number of proposals have been made.

In this example we assumed the agents negotiated according to the so-
called alternating offers protocol (AOP) [38], meaning that the agents
take turns making proposals. Specifically, it means that an agent is not
allowed to make two proposals in a row. After making a proposal the agent
first needs to wait for the other agent to respond and make a counter-
proposal before she can make a new proposal herself. While this is certainly
not the only protocol for automated negotiation, it does seem to be the one
that is most commonly used in the literature.

In the field of automated negotiation we typically assume there is a fixed
set of possible offers that the agents can propose to one another. This
set is called the offer space (or sometimes agreement space). In the
example of the car sale, the offer space consisted of every possible price that
the seller could possibly ask, or that the buyer could possibly offer. So,
this could be the set of all integers. One important thing to notice about
this example, is that the agents were negotiating over just one issue: the
price of the car. This is what we call a single-issue negotiation. In many
cases in the literature, however, one studies multi-issue negotiations.
That is, negotiations in which each proposal may involve multiple different
components. For example, suppose there are two friends, Alice and Bob,
that want to go to the cinema together. They need to agree on three different
issues:

� Which movie they will see.
� Where they will see this movie (in which cinema).
� When they will see this movie (which day of the week and at which
time).

One way to conduct such multi-issue negotiations would be to negotiate each
issue separately, one by one. However, a more common approach in the lit-
erature is to just negotiate all issues at the same time. This means that each
proposal indicates a value for all three issues at the same time. For example,
Alice might start by proposing to see The Godfather in cinema Rialto on
Friday at 20:00. Bob might then reject this proposal, and instead propose
to see Casablanca, in cinema Paradiso, on Saturday at 18:00, etcetera.

We should remark that in this book we will use the term offer to refer
to a potential outcome of a negotiation. That is, something that can be
proposed or accepted or rejected. So, in the scenario of the car sale, the
price of $10,000 would be an example of an offer, while in the scenario of
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the two friends who are going to the cinema, the tuple (The Godfather,
Rialto, Fri 20:00) would be an example of an offer. Furthermore we will use
the term proposal to refer to the action of proposing an offer. Finally, we
use the term agreement to refer to an offer that has been accepted as the
final outcome of the negotiation between the two agents. We should note
however, that the literature is not very consistent on this matter. Other
authors may use these terms in different ways, or they may use alternative
terms such as deal, contract, or bid with their meanings being different
for each author.

2.2 Formal Model

In order to be able to implement an agent that can negotiate, we first need
to have a formalization of what ‘negotiation’ means exactly. We will here
discuss this formal model. We assume there are exactly two agents, which
we denote by a1 and a2 respectively.

2.2.1 The Offer Space

In order to implement a negotiating agent, the first thing we need to know
is which offers the agents can possibly propose. This is known as the offer
space or agreement space and is usually denoted by Ω. In the example
of a single-issue car sale, the set of possible offers was the set of all positive
integers N, where each number k ∈ N represents a proposal to trade the car
for a price of k dollars. A single offer from the offer space is usually denoted
by ω.

In the case of a multi-issue negotiation, the offer space can be written
as the cartesian product of smaller sets that we call issues:

Ω = I1 × I2 × · · · × Im

so each offer ω is a tuple:

ω = (x1 , x2 , . . . , xm)

where each xj ∈ Ij . For each issue, we will refer to its elements as its
options.

For example, the scenario in which two friends are planning to watch a
movie together, can be modeled as a negotiation over the following three
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issues, representing the movie, the cinema, and the time slot, respectively:

I1 = {The Godfather ,Casablanca,The Big Lebowski}
I2 = {Rialto,Paradiso}
I3 = {Fri 18:00,Fri 20:00,Fri 22:00,Sat 18:00,Sat 20:00,Sat 22:00}

We see that the issue ‘movie’ has 3 options, the issue ‘cinema’ has 2 options,
and the issue ‘time slot’ has 6 options. So, the offer space contains 3×2×6 =
36 possible offers.

Note that issues may or may not have a natural ordering. For example,
the issue I3 above, representing the time slot, is naturally ordered from early
to late. On the other hand, the other two issues I1 and I2 do not have any
ordering (of course, we could put them in any order we like, such as an
alphabetical order, but that is not very meaningful for the negotiations).

Furthermore, note that the division of an offer space into separate issues
can sometimes be a bit arbitrary. For example, rather than having one issue
representing the time slot, we could have instead defined two separate issues:
one issue for the day of the week, and one issue for the time. So, we could
have defined the offer space as a product of the following 4 issues:

I1 = {The Godfather ,Casablanca,The Big Lebowski}
I2 = {Rialto,Paradiso}
I3 = {Fri, Sat}
I4 = {18:00, 20:00, 22:00}

This would not have made any difference. This also works in the other direc-
tion: if we wanted, we could have just ignored the separate issues altogether
and model the entire domain as one single issue containing 36 different op-
tions, without any structure. However, as we will see in Section 2.2.3.3,
decomposing the offer space into separate issues has the advantage that it
allows us to define simple utility functions that are linear combinations of
smaller functions that are each defined over a single issue.

Also note that in a real-world scenario there may exist constraints among
the issues. For example, Rialto might only screen The Godfather on Satur-
days, and Paradiso might not screen any movie at all on Friday at 18:00. So,
in that case not every combination of options would be possible, and the of-
fer space Ω would only be a subset of the Cartesian product I1×I2×· · ·×Im.
However, in most of the literature such constraints are not taken into ac-
count and one therefore assumes that all possible combinations of options
are allowed.
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2.2.2 The Alternating Offers Protocol

The next thing we need to specify is the negotiation protocol. That is, the
rules that determine when which agent is allowed to propose or accept which
offer, and when a proposal will be considered a formally binding agreement.

The most commonly used protocol for bilateral negotiations, is the al-
ternating offers protocol (AOP) which we have already seen above. In this
protocol the agents take turns, so the protocol needs to specify which of the
two agents will make the first proposal. In this section we will, without loss
of generality, assume that this is always agent a1.

At the start of the negotiations, agent a1 can choose any ω ∈ Ω from the
offer space and propose it to a2. Next it is agent a2’s turn. Agent a2 can
now either accept the previous proposal from a1, or propose an alternative
offer ω′ ∈ Ω. If a2 accepts the previous offer ω then the negotiations are
over and ω will be considered a formally binding agreement. Otherwise, if
a2 does not accept ω and instead makes a new proposal, then we say that
a2 rejects the offer ω. Next, it is again a1’s turn. This time, a1 can choose
between accepting the previously received proposal ω′, or rejecting it and
proposing a new offer ω′′ from the offer space Ω.

This continues until one of the following stopping criteria is satisfied:

1. A proposal is accepted.
2. A given temporal deadline T has passed.
3. A maximum number of rounds N have passed.

In the first case we say the negotiations have succeeded, while in the other
two cases we say the negotiations have failed, meaning that the agents
did not manage to come to any agreement. When we say that a ‘round ’
has passed, we mean that an agent has proposed or accepted an offer. So,
if N = 10 it means that each agent can make at most 5 proposals (or 4
proposals and an acceptance).

We should remark here, that many authors assume there is only a tempo-
ral deadline, but no maximum number of rounds, or vice versa. However, if
there is no temporal deadline then we can equivalently just say that T =∞.
Similarly, if there is no maximum number of rounds, then this is equivalent
to saying that N = ∞. So, we can always say, without loss of generality,
that there is a temporal deadline as well as a maximum number of rounds,
as long as we allow these values to be infinite.

In the rest of this book we will use the notation (i, p, ω, t) to indicate that
agent ai proposes offer ω at time t, and we will use the notation (i, a, ω, t)
to indicate that agent ai accepts offer ω at time t. We follow the convention
that t = 0 represents the time at which the negotiations start.
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Definition 1. We define a negotiation action to be a tuple

(i, η, ω, t) ∈ {1, 2} × {p, a} × Ω× R

where i represents the index of the agent performing the action, and η rep-
resents the type of the action, which can be either the symbol p (‘propose’),
or the symbol a (‘accept’). Furthermore, ω is the offer that is being proposed
or accepted, and t is the time at which the agent proposes or accepts the
offer. We define a proposal to be negotiation action for which η = p and
we define an acceptance as a negotiation action for which η = a.

Some authors also include a third type of action, besides ‘propose’ and
‘accept’, which is called ‘withdraw ’. If an agent withdraws, it means that
the agent chooses to end the negotiations immediately, without agreement.
So, this also adds a fourth stopping criterion to the three that we mentioned
above. However, since this type action does not play an important role in
the rest of this book, we prefer not to include it here, so as to keep the
formalization simple.

Definition 2. A history h is a list of negotiation actions, sorted in chrono-
logical order (i.e. in order of increasing values of t).

A history is defined as a list of negotiation actions, which themselves are
defined as 4-tuples, so a history is a list of 4-tuples. Furthermore, in the case
of multi-issue negotiations, the offers ω inside those tuples are themselves
tuples as well. For example, a history with 10 negotiation actions could look
as follows:

h =
(
ac1 , ac2 , . . . , ac9 , ac10

)
=

(
(1, p, ω1, t1) , (2, p, ω2, t2) , . . . , (1, p, ω9, t9) , (2, a, ω9, t10)

)
=

(
(1, p, (x11, x

2
1, x

3
1), t1) , (2, p, (x12, x

2
2, x

3
2), t2) ,

. . . , (1, p, (x19, x
2
9, x

3
9), t9) , (2, a, (x19, x

2
9, x

3
9), t10)

)
where each ack is a negotiation action, and each xjk ∈ Ij is an option from
the j-th issue in the k-th proposal. In this example we assumed that the
domain has three issues. Note that in the 10-th action agent a2 accepts the
offer ω9 that was proposed by a1 directly before that.

In the rest of this book we may sometimes abuse notation and terminol-
ogy and consider h to be a set of negotiation actions rather than a list, so
we may write, for example, ack ∈ h.
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We can now formally define the AOP as follows.

Definition 3. We say a history h satisfies the AOP (with deadline T and
maximum number of rounds N) if and only if the following conditions all
hold:

1. For any two different negotiation actions ac = (i, η, ω, t) and ac′ =
(j, η′, ω′, t′) in h (so ac ̸= ac′), we have that t ̸= t′.

2. For every pair of consecutive negotiation actions in h, denoted (i, η, ω, t)
and (j, η′, ω′, t′), we have that i ̸= j.

3. A negotiation action with η = a can only appear as the last element of
the history.

4. If (i, η, ω, t) and (j, η′, ω′, t′) are the second-last and last elements of
the history respectively and η′ = a, then we must have ω = ω′.

5. For all negotiation actions (i, η, ω, t) in h we have t ≤ T .
6. The length of h can be at most N .

The first rule says that only one proposal or acceptance can be made at
a time. The second rule says that the agents take alternating turns. The
third rule says that the negotiations are over as soon as one agent accepts
an offer. The fourth rule says that an agent can only accept the offer from
the last proposal and not from any earlier proposals. The fifth rule says that
the negotiations are over when the deadline T has passed, and the last rule
says that the negotiations are over as soon as N negotiation actions have
been made.

The alternating offers protocol is also displayed as a finite-state machine
in Figure 2.1.

Definition 4. Let h be a history that obeys the AOP and let (ik, ηk, ωk, tk)
be its last element. Then we say that h ended with agreement if and only
if ηk = a. In that case we say that ωk is the accepted offer.

2.2.2.1 Some Remarks

Some authors model the action of rejecting a proposal and the action of
making a counter-proposal as two separate actions. However, since in the
AOP a counter-proposal is always preceded by a rejection this is not really
necessary. So, we will here follow the convention that the act of rejecting
the previous proposal and the act of making a new proposal are modeled as
one single action.

At first sight, it may seem a bit unrealistic to assume that there is a
single deadline T which is imposed upon the two agents. After all, in a
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Figure 2.1: The alternating offers protocol as a finite-state machine.
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real-world negotiation, who would impose a deadline onto the two agents?
However, we can imagine that in a real scenario each agent ai itself has its
own individual deadline Ti, which is may be determined by various external
factors. In that case, we can simply define the global deadline T as the
individual deadline that comes the earliest. That is: T := min{T1, T2}.

Arguably less realistic, is the assumption that the agents have a maxi-
mum number of proposals N that they can make. The main advantage of
this assumption is that it makes it easier to analyze the negotiations us-
ing mathematical or game-theoretical techniques that require a fixed and
commonly-known number of rounds. However, I personally can’t really
imagine any real-world situation in which two negotiators would only be
allowed to make a certain number of proposals which is known to both ne-
gotiators in advance. The only similar scenario I can imagine, is that one of
the agents is human and therefore would get tired after rejecting a certain
number of proposals and give up. However, even in that case I don’t think
there would be a clearly fixed number N that is known by both agents in
advance. Instead, I think it would be more realistic to model this with a
random variable that assigns a probability P (N) to every possible value of
N , to model the probability that the human would be too tired to continue
after N rounds. Furthermore, one major disadvantage of including a maxi-
mum number of proposals, is that it implies an asymmetry between the two
negotiators, since the agent that has the last turn will not be able to make
any new proposals, and thus will be forced to either accept the last proposal
or to end the negotiations without agreement.

Finally, we should remark that according to the definition of the AOP
that we used here, an agent is only allowed to accept the last proposal it
received from its opponent. That is, an agent is not allowed to accept any
proposals that it received from the opponent in any of the earlier rounds.
So, if an agent does not immediately accept a certain offer ω proposed
by the opponent, then the possibility of accepting that offer may be lost
forever. While this may seem overly strict, in practice this rule is not much
of a restriction because if the agent later changes its mind and does want
to accept ω, then he can simply propose that offer again itself. Since the
opponent already proposed it earlier, there are good reasons to believe that
the opponent will be willing to accept it.

2.2.3 Utility Functions

The negotiation protocol defines what the agents are allowed to do, but does
not specify anything about how an agent would choose between its various
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legal actions. That is, it does not specify the agents’ preferences. Such
preferences are typically modeled by means of utility functions. If we see
negotiations as a game, and we see the negotiation protocol as the rules of
the game, then the utility functions specify, for each agent, its goal in the
game.

Clearly, each agent has its own preferences over the set of possible agree-
ments. For example, in the case of a negotiation between a buyer and seller
over the price of a car, the seller prefers to sell the car for the highest possi-
ble price, while the buyer prefers to sell the car for the lowest possible price.
To model these preferences we assume that each agent has its own personal
utility function ui, which is a map from the set of offers to the set of real
numbers:

ui : Ω→ R
A higher utility function represents a more desired outcome. So, each agent
aims to make an agreement for which his utility value is as high as possible.
In the example of the car sale, the seller would have a utility function that
strictly increases as a function of the price, while the buyer has a utility
function that strictly decreases as a function of the price.

In the rest of this paper it will turn out useful to use the notation ωmax
i

for the offer most preferred by agent ai, and the notation ωmin
i for the offer

least preferred by agent ai:

ωmax
i := argmax

ω∈Ω
{ui(ω)} (2.1)

ωmin
i := argmin

ω∈Ω
{ui(ω)} (2.2)

2.2.3.1 Von Neumann-Morgenstern Utilities

When we only look at a single negotiation, the interpretation of the utility
functions is clear: they represent the agents’ respective preferences over
the possible outcomes of that negotiation. However, you typically do not
implement a negotiation algorithm to use it only one time and then throw
it away. Ideally, it should be possible to use the same negotiation algorithm
more than once. But then, how do we interpret the utility functions? After
all, if we use the algorithm, say, five times, then it may make five different
agreements. But how do we determine which combination of five agreements
is the best?

While there are many possibilities, the most obvious and most commonly
used interpretation is that the agent would prefer those outcomes that max-
imize the sum of their utility values (or equivalently: the average). That
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is, if the algorithm is used n times, then the agent ai aims to maximize∑n
k=1 ui(ωk), where ui is the utility function of the agent and ωk the agree-

ment reached in the kth negotiation. Utility functions that are interpreted
in this way are called von Neumann - Morgenstern utilities. In the
rest of this book we will always assume that utility functions are such von
Neumann-Morgenstern utilities, unless specified otherwise.

One important aspect of von Neumann-Morgenstern utilities is that we
can add any arbitrary constant to them or multiply them with any arbitrary
positive constant, without changing the actual preferences. In other words,
if a and b are two arbitrary real numbers (but with a > 0) and ui is the
utility function of our agent, then it should not make any difference if we
used the utility function a · ui + b instead of ui. This, in turn, means that if
the offer space Ω is finite, then we can always normalize the utility function
such that the offer with highest utility has utility value ui(ω

max
i ) = 1 and

the offer with lowest utility has utility value ui(ω
min
i ) = 0. We will call this

a normalized utility function.
Note that if ui is some arbitrary utility function, then it is easy to check

that the utility function u′i defined as follows is a normalized utility function.

u′i :=
ui − ui(ω

min
i )

ui(ωmax
i )− ui(ωmin

i )

Since any von Neumann-Morgenstern utility function over a finite offer space
can be normalized, it is often assumed in the literature that the agents’
utility functions are indeed normalized.

2.2.3.2 Self-interested Agents

In the rest of this book, we will assume that agents are always purely self-
interested with respect to their utility functions. This means that each agent
only aims to maximize its own utility function, and does not care at all if
its opponents also receive high utility values.

Of course, the point of automated negotiation is that agents need to
compromise. An agent that only makes proposals that yield high utility for
itself and low utility for its opponent will never be able to come to an agree-
ment and therefore only end up with low utility. So, in negotiations, even a
purely-self interested agent still needs to take the other agents’ preferences
into account as well. However, the point is that when an agent makes a
concession to its opponent, it does that not because it wants the opponent
to receive more utility, but rather only because it needs to concede, to secure
high utility for itself.
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Now, this may sound like we are only trying to model very selfish and
anti-social agents that do not care about each others’ welfare. However, it
is extremely important to understand that this is not the case. That is,
‘self-interested’ does not mean the same as ‘selfish’.

For example, suppose that we have two agents a1 and a2 with respective
utility functions u1 and u2. Furthermore, suppose that agent a1 is a social
agent that cares just as much about the opponent’s utility as it cares about
its own. So, it aims to maximize the sum u1+u2 of the two utility functions
(this is also known as the social welfare). Now, note that we can simply
define a new utility function u′1 for agent a1 as follows:

u′1 := u1 + u2

We now see that, even though a1 is a very social agent, we can at the
same time say that, with respect to utility function u′1, it is purely self-
interested. In other words, the question whether or not an agent is self-
interested depends entirely on how we define its utility function and has
nothing to do with the question whether or not it is selfish.

2.2.3.3 Linear Utility Functions

In the case of multi-issue negotiations, one often assumes linear utility
functions. We say a utility function is linear, if it is composed as a linear
combination of several smaller functions, each one defined over one of the
issues of the domain. That is:

ui(ω) =
m∑
j=1

vji (xj)

where:

ω = (x1, x2, . . . , xm) ∈ I1 × I2 × · · · × Im

and each vji is a function that maps issue Ij to the real numbers: vji : Ij → R.
We will call these functions vji the evaluation functions. The superscript
j refers to the issue Ij for which it is defined, while the subscript i refers to
the agent ai to which it belongs.

Alternatively, linear utility functions are often written as:

ui(ω) =

m∑
j=1

wj
i · v

j
i (xj) (2.3)
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where the wj
i are the so-called weights, which typically sum to one:∑m

j=1w
j
i = 1. However, this expression is not fundamentally different from

the expression without weights, as the weights can simply be ‘absorbed’ in-
side the evaluation functions vji . That is, to re-write the second expression

into the form of the first expression, we simply define vji
′
:= wj

i · v
j
i .

Nevertheless, the second expression is often preferred, because it allows
to emphasize that an agent might consider some issues more important than
other issues, by giving them a higher weight. Furthermore, in this form it is
easier to define utility functions that are normalized, because all you need
to do is choose the weights and evaluation functions such that the following
conditions are met:

� All evaluation functions vji are mapped into the interval [0, 1].

� Each issue Ij has at least one option xj ∈ Ij for which vji (xj) = 0.

� Each issue Ij has at least one option xj ∈ Ij for which vji (xj) = 1.

� The weights sum to one:
∑m

j=1w
j
i = 1

Just be careful not to confuse the notation w for weights, with the notation
ω for offers.

One should realize, that when we say a utility function is linear, it only
refers to the fact that it is a linear combination of evaluation functions vji ,
while those evaluation functions themselves may still be non-linear. In fact,
it often does not even make sense to ask if a certain evaluation function is
linear or not, unless its options are numerical. For example, say that Alice’s
preferences over which movie to watch are given as follows:

v1Alice(The Godfather) = 0

v1Alice(Casablanca) = 1

v1Alice(The Big Lebowski) = 0.7

There is no way to tell if this function is linear or not. This is because the
options of this issue (The Godfather, Casablanca and The Big Lebowski) are
non-numerical. For the same reason it normally does not make sense to ask
if a utility function is linear if that function is defined over an offer space
that only consists of a single issue.

In the rest of this book, we will sometimes abuse notation and write
vji (ω) when we actually mean vji (xj), where xj is the j-th component of ω.
That is:

vji (x1, x2, . . . , xj , . . . , xm) := vji (xj)
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2.2.4 Reservation Values

In many real negotiation scenario it may happen that some proposals are so
bad that you would rather not to make any agreement at all than to accept
any of them.

For example, in the example of a car sale, if the seller asks a ridiculously
high price, then the buyer would prefer not to buy the car at all than to pay
that price. This can be either because the buyer knows she can get a better
deal elsewhere, or because she simply doesn’t have that amount of money,
or because she would prefer not to own a car at all, rather than to pay that
much.

This means that a negotiating agent should not only be able to compare
the various possible offers with each other, but should also be able to com-
pare them with the situation that the negotiations end without agreement.
For this, we define the reservation value.

Definition 5. An agent’s reservation value is the amount of utility it
receives when the negotiations end without agreement.

This definition implies that a rational agent would never accept any
proposal that yields a utility value smaller than that agent’s reservation
value. After all, the agent by definition prefers to not make any agreement
at all than to accept that proposal. Another way to look at it, is to say that
the reservation value rvi is the minimum amount of utility that the agent
ai is guaranteed to get. After all, ai can always choose to withdraw from
the negotiations, or to reject any proposals it receives. Therefore, a rational
agent would only propose or accept any offer that offer yields more utility
than that its reservation value.

Here is another example. Suppose two friends, Alice and Bob, want to
go out for dinner together and they are discussing where to go. They have
three options: a Chinese restaurant, an Italian restaurant, or a Mexican
restaurant. Let us denote this as follows:

Ω = {CHI , ITA,MEX }.

Unfortunately, they have different preferences, so they will have to find a
compromise. If they can’t agree about where they will eat, then they will
each just have to stay home and eat alone. Let’s suppose that Alice assigns
the following utility values to the options:

uAlice(CHI ) = 1, uAlice(ITA) = 4, uAlice(MEX ) = 5
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and that her reservation value is 3, which we denote as:

rvAlice = 3

The fact that she assigns the lowest utility to Chinese food means that this is
her least preferred option. In fact, the utility she assigns to Chinese food is
even lower than her reservation value. This means that she dislikes Chinese
food so much, that she would prefer to just eat alone at home than to eat
Chinese food with Bob. Furthermore, we see that she prefers Mexican food
over Italian food. However, the utility she assigns to Italian food is still
higher than her reservation value, which means that she still prefers to eat
Italian food with Bob, than to stay at home.

The situation that the negotiations end without agreement is often called
the conflict outcome, or disagreement.

2.2.5 Discount Factors

In the literature, many authors have studied models of negotiation in which
the utility obtained by the agents does not only depend on the agreement
they make, but also on the time at which they make that agreement. That
is, the faster they make the agreement, the higher their respective utilities.
This is typically modeled by introducing so-called discount factors. In a
negotiation with discount factors, when the agents come to an agreement ω
each agent receives a discounted utility ui(ω, t) defined as:

ui(ω, t) := ui(ω) · δt

where δ ∈ (0, 1] is called the discount factor, t is the time at which the
agents come to an agreement and the function ui on the right-hand side is
the ordinary utility function as defined previously, which in this context is
also referred to as the undiscounted utility. Note that since δ is between
0 and 1, the discounted utility decreases over time. Furthermore, note that
if δ = 1 then the discounted utility is just the same as the undiscounted
utility, so this is equivalent to saying that there is no discount factor at all.

Furthermore, when studying negotiations with discount factors, it is
sometimes also assumed that the reservation values are discounted as well.
This means that if one of the two agents decides to withdraw from the ne-
gotiations at time t, then each agent ai receives its respective discounted
reservation value rvi · δti . In that case it may indeed be beneficial for an
agent to withdraw from the negotiations early, if it seems unlikely that they
will come to a good deal. This is why some authors include a ‘withdraw’
action in the AOP, as we briefly discussed in Section 2.2.2.



28 CHAPTER 2. BASIC NEGOTIATIONS

I personally feel that the presence of discount factors is a somewhat
unrealistic assumption. It seems to me that most researchers only make this
assumption in order to obtain more interesting results, rather than because
it yields a realistic model of negotiation.

For example, Rubinstein [39] used discount factors because it enabled
him to find a mathematically optimal solution for certain negotiation sce-
narios. More generally, the advantage of discount factors is that they force
the agents to concede quicker. After all, without discount factors an agent
could simply refuse to make any concessions until very close to the deadline.

Some people might argue that discount factors could be used to model
a human’s impatience. However, that argument of course only holds in
the case that you are modeling negotiations with humans. Furthermore, I
don’t think it is very obvious that a human’s impatience is indeed accurately
modeled by an exponentially decreasing discount factor.

Another argument that some people might use in favor of discount fac-
tors, is that they can model the fact that certain goods such as fish or
flowers are perishable, so their value quickly decreases over time. However,
I don’t think that that is a strong argument, since the typical time scale
for the decay of such products is several days, which is much longer than
the time span of a typical negotiation involving such products, which might
take place in a matter of seconds, or at most minutes.

2.2.6 Knowledge

The final ingredient that is still missing before we can fully specify a nego-
tiation scenario, is the question how much knowledge each agent has about
the other agents’ utility functions, reservation values and discount factors
(if present).

Authors that mainly focus on the theoretical aspects of negotiation, often
assume full knowledge about the utility functions and reservation values
because it is typically much harder to derive formal mathematical results
under partial knowledge.

On the other hand, authors that focus more on algorithms and exper-
iments often assume that each agent only knows its own utility function
and reservation value, while it does not know anything about its opponent’s
utility function or reservation value, except maybe that the opponent’s util-
ity function is linear. Furthermore, they may sometimes assume that some
of the issues are ordered, and that each agent knows, for each such issue,
whether the opponent’s preference over the options of that issue are increas-
ing or decreasing w.r.t the ordering (e.g. Alice knows that Bob prefers to
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go to the cinema as late as possible).
Of course, for many commercial applications it would be unrealistic to

assume the agents know each other’s utility functions. After all, each agent
would aim to exploit the other one as much as possible and would therefore
try to hide its utility function. Nevertheless, theoretical research that does
assume full knowledge is still very valuable, since it allows us to determine a
theoretical ‘upper bound’ to what an agent could hypothetically achieve in
the ideal case of full knowledge (for example, the Nash bargaining solution
[35] which we will discuss later on in this book). This, in turn, allows us
to quantify how well practical algorithms are able to approach that upper
bound [15].

Furthermore, one can argue that the assumption of having no knowledge
about the opponent’s utility at all, is also unrealistic. For example, a car
dealer knows that some cars are more valuable than other cars and under-
stands that the customer’s preference is largely determined by his budget. I
would therefore argue that in many negotiation scenarios the most realistic
model lies somewhere in between. A real negotiator would not know the ex-
act utility function of its opponent, but would have at least some background
knowledge about the negotiation domain, from which it could make some
basic assumption about the opponent’s preferences. Another good example
of this, is given in [17] and [18] in which two logistics companies negotiate
the exchange of truck loads. Their utility functions depend on expenses like
fuel price and truck driver salaries. While neither company knows exactly
how much the other company pays for fuel and salaries, they do know that
these prices cannot be radically different between the two companies. So,
they can each make an educated guess about the opponent’s utility function.

2.2.7 Negotiation Domains

Definition 6. A negotiation domain D for n agents consists of the fol-
lowing components:

� An offer space Ω.
� For each agent ai ∈ {a1, a2, . . . , an}:

– a utility function ui : Ω→ R
– a reservation value rvi ∈ R
– a discount factor δi ∈ (0, 1]

A negotiation domain with two agents (i.e. n = 2) is called a bilateral
negotiation domain and a negotiation domain with more than two agents
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(i.e. n > 2) is called a multilateral negotiation domain.

Definition 7. In a negotiation domain for n agents, each offer ω corre-
sponds to an n-tuple which we call the utility vector and which consists of
the utility values of all agents:

(u1(ω), u2(ω), . . . , un(ω))

It is often instructive (in the case of bilateral negotiations) to plot the
utility vectors of a given negotiation domain in a diagram such as in Fig-
ure 2.2. We will call this a utility space diagram or simply a utility
diagram. In such diagrams, each black dot represents one offer. For ex-
ample, if an offer ω yields utility values u1(ω) = 0.3 and u2(ω) = 0.6 for
the two agents respectively, then that offer is represented by a black dot
with coordinates (0.3 , 0.6). Furthermore, in such diagrams we may draw
the reservation values of the agents with a horizontal line and a vertical line
respectively. For example, if agent a1 has a reservation value of rv1 = 0.1,
then we draw a vertical line at x = 0.1 and if agent a2 has a reservation
value of rv1 = 0.2, then we draw a horizontal line at y = 0.2.

Whenever we refer to such diagrams we may use somewhat sloppy lan-
guage and use the term ‘offer’ or the symbol ω when we technically mean
the utility vector of that offer.

Of course, it is important to remember that we often assume that neither
of the two agents knows the utility function of the other and therefore neither
of the two agents would be able to draw such a diagram. In other words,
such diagrams are typically only meaningful to you, as the researcher, but
not to the agents themselves.

A bilateral negotiation domain is called a split-the-pie domain if it
satisfies ∀ω ∈ Ω : u1(ω) + u2(ω) = 1. It is called this way, because it is as if
the two agents are negotiating about how to divide a pie among them. The
size of the pie is 1, and each agent’s utility is proportional to the size of the
pie she gets. So, if a1 gets, say, 40% of the pie then her utility is 0.4 and
therefore a2 gets 60% of the pie, corresponding to a utility of 0.6. Another
example of split-the-pie domain is the scenario of the seller and the buyer
that are negotiating the price of a car. A utility diagram of a split-the-pie
domain is displayed in Figure 2.3.

2.2.7.1 Single-Issue Domains vs. Multi-Issue Domains

It is sometimes argued that multi-issue negotiations are more complex than
single-issue negotiations, because they involve making trade-offs between the
various different issues. However, this is somewhat misleading.
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Figure 2.2: Utility space diagram. Every dot is the utility vector of one offer
ω in the offer space Ω. The red lines represent the reservation values of the
two respective agents.
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Figure 2.3: Utility space diagram of a split-the-pie domain. Note that all
utility vectors lie on the line y = 1− x.
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Of course, if you compare a single-issue domain D1 that contains 10
different offers, with a multi-issue domains D2 that contains 3 issues with
10 options each, then indeed a negotiation over the multi-issue domain will
be more complex because it involves 103 = 1, 000 offers in total. However,
this is not because there are multiple issues, but rather because the domain
simply contains more offers.

In fact, if we compare domain D2 with a single-issue domain D3 of the
same size (i.e. with 1,000 offers), then I would even say that the single-
issue domain D3 is more complex, especially if the utility functions of D2

are linear. After all, in that case, to describe the utility functions of D2

we only need 33 parameters (the three weights, plus 10 numbers for each
issue Ij to represent the values vji (xj)). On the other hand, to describe the
utility functions in the single-issue domain D3 we need 1,000 parameters:
one for each offer. As we will see later on in Chapter 4, this means that for
many opponent modeling algorithms it is much easier to learn the opponent’s
utility function in the multi-issue domain. In fact, many existing opponent
modeling algorithms would not even work on single-issue domains.

I therefore argue that if a single-issue domain and a multi-issue domain
each have the same size, then, in general, the single-issue domain would
typically be more complex than the multi-issue domain.

One exception to this rule, however, would be if we assume that all issues
are ordered and that we know, for each issue, the opponent’s preference
ordering over that issue. In that case a single-issue domain would be easier
to handle.

2.3 Pareto Optimality and Individual Rationality

In this section we discuss two important properties that any agreement
between two agents should ideally satisfy: individual rationality, and Pareto
optimality.

As mentioned before, a rational agent would never accept an offer that
yields a utility value lower than its reservation value. This motivates the
definition of individual rationality.

Definition 8. In any negotiation domain an offer ω is said to be rational
for agent ai if that agent’s utility for that offer is strictly greater than that
agent’s reservation value:

ui(ω) > rvi

Furthermore, we say an offer ω is individually rational if it is rational
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for all agents:

∀i ∈ {1, 2, . . . , n} : ui(ω) > rvi

You may find this terminology a bit confusing, since individual ratio-
nality actually refers to all agents, but this is an established term in the
literature.

The importance of individual rationality, is that in a bilateral negotiation
only the individually rational offers could ever become an agreement. After
all, if an offer is not individually rational, then at least one of the two agents
would never accept or propose it (unless, of course, the agent is very badly
programmed).

In a multilateral negotiation, on the other hand, this depends on the
details of the protocol. If the protocol prescribes that all agents need to
agree with an offer for it to become an agreement, then again we have that
only individually rational offers can become agreements. However, there are
scenarios and protocols in which it is possible for subsets of agents to make
agreements. In such cases, of course, an agreement only needs to be rational
for that subset of agents.

The set of individually rational offers can be visualized easily in a utility
diagram, since it is the set of all offers that lie above the horizontal line
representing rv2, as well as to the right of the vertical line representing rv1.
See Figure 2.4.

Before we can define the concept of Pareto optimality, we first have to
define the concept of domination. Suppose that we have two offers, ω and
ω′, such that each agent prefers ω over ω′. We then say that ω dominates
ω′, or that ω′ is dominated by ω. We can give a precise definition as follows.

Definition 9. We say that an offer ω dominates another offer ω′ if:

∀i ∈ {1, 2, . . . , n} : ui(ω) ≥ ui(ω
′)

and there is at least one agent for which this inequality is strict:

∃i ∈ {1, 2, . . . , n} : ui(ω) > ui(ω
′)

We say an offer ω′ is dominated by ω, if ω dominates ω′.

In a utility diagram, this can be visualized as follows: first, draw a
vertical line through the point representing ω′, next, draw a horizontal line
through ω′. Now, if ω lies on or above the horizontal line, and also lies on
or to the right of the vertical line, then ω dominates ω′. See Figure 2.5.
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Figure 2.4: The individually rational offers are those for which their utility
vector lies above the horizontal line representing rv2 and to the right of the
vertical line representing rv1. Here these utility vectors are all drawn with
a circle around them.
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Figure 2.5: Example of domination. The offer ω lies to the top-right of ω′

and we therefore say that ω dominates ω′.
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Clearly, if the agents agree upon an offer ω′ that is dominated by some
other offer ω, then this outcome would not be optimal, since at least one
agent would actually prefer ω as the final agreement and none of the other
agents would have any objection against ω instead of ω′. So, ideally, agents
would only agree upon offers that that are not dominated by any other offer.
Such offers are called Pareto-optimal.

Definition 10. An offer ω is Pareto optimal if it is not dominated by
any other offer.

However, unlike individual rationality, Pareto optimality is hard to guar-
antee in practice, if the agents don’t know each other’s utility functions. So,
many negotiation algorithms still often make deals that are not Pareto op-
timal.

To visualize Pareto optimality, again draw a horizontal line and a vertical
line through a given offer ω. The lines divide the space into for quarters.
If the top-right quarter (including the lines themselves) is empty, then ω is
Pareto optimal. See Figure 2.6.

Definition 11. For any negotiation domain D, its Pareto set Ωp is the set
of all Pareto-optimal offers. The Pareto frontier is the set of all utility
vectors of the Pareto-optimal offers.

Note that the Pareto set is a subset of Ω, while the Pareto frontier is a
subset of Rn. See Figure 2.7 for the visualization of a Pareto frontier.

2.4 Competitiveness

In some negotiation domains it is easier to find good offers that are ac-
ceptable to all agents than in other domains. For example, if the domain
contains a single offer ω∗ that yields the maximum utility to all agents (i.e.
ω∗ = ωmax

1 = ωmax
2 ), then it is obvious that that specific offer should be

the one that the agents agree upon. After all, no agent would benefit from
switching to any other agreement. The interests of all agents are aligned
and therefore we say the domain has zero competitiveness or opposition (we
will use these two terms interchangeably).

On the other hand, in a split-the-pie domain there is high opposition,
because the interests of the two agents are diametrically opposed. The bet-
ter an offer is for one agent, the worse it is for the other. In fact, we can
construct even more competitive domains where there is no good intermedi-
ate solution and every offer is really bad for at least one agent of the agents.
See Figure 2.8.
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Figure 2.6: The offer ω is Pareto optimal because it is not dominated by any
other offer. We can see this because the area that lies above the horizontal
dashed line and to the right of the vertical dashed line is empty.
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Figure 2.7: Pareto-frontier. All offers that are Pareto-optimal have been
drawn here with a circle around them.
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Figure 2.8: Left: a domain with low opposition. Right: a domain with high
opposition.

In other words, the ‘competitiveness’ or ‘opposition’ of a domain mea-
sures how easy it is for all agents to receive high utility. Now, it would be
nice to have a formula that allows us to quantify, for any given domain its
competitiveness. It turns out, however, that many different such formulas
have been proposed in the literature, so we will discuss a couple of them.
For simplicity, we will assume the utility functions are normalized. Each
of the expressions we discuss here is based on the idea that we first pick
some ‘ideal’ offer, and then measure the difference between the utility vec-
tor of that ideal offer and the ‘utopian’ utility vector (1, 1, . . . , 1) that assigns
the maximum utility to each agent. The higher this value, the higher the
opposition of the domain.

Perhaps the most commonly used definition of opposition is one based
on the Euclidean distance [46]. That is:

opp(D) := min
ω∈Ω

√√√√ n∑
i=1

(1− ui(ω))2 (2.4)

While this definition may initially seem intüıtive, one could argue that
it is not entirely satisfactory. For example, suppose that the minimum Eu-
clidean distance is attained for some offer with utility vector (0.6, 0.6). Now,
it is easy to see that if we change the domain a bit, by replacing this offer
with a new offer with utility vector (0.6, 0.65), then according to this Eu-
clidean measure, the domain would become less competitive, even though
we have only increased the utility of one of the two agents. Moreover, we
can even slightly decrease the utility of the other agent, to get (0.59, 0.65)
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and the Euclidean opposition measure would still indicate that this domain
is less competitive than the original one. One could argue that this result is
somewhat contrary to what you might expect from an accurate measure of
opposition.

One alternative definition is the following [1]:

opp(D) := min
ω∈Ω

1− min
i∈{1,2,...,n}

ui(ω) (2.5)

Here, the distance to the ‘utopian’ outcome is defined as the difference be-
tween 1 and the utility obtained by the agent that receives lowest utility.
The advantage of this measure is that to decrease the competitiveness of a
domain, we need to increase the utility of all agents.

Yet another definition [37] also uses the Euclidean distance, but defines
the ‘ideal offer’ as the one that minimizes |u1(ω)− u2(ω)| among all Pareto
optimal offers. That is:

opp(D) :=

√√√√ n∑
i=1

(1− ui(ω∗))2 (2.6)

where:
ω∗ := min

ω∈Ωp
|u1(ω)− u2(ω)| (2.7)

In the end, there is no obvious way to determine which of these measures
is the ‘best’. I would say that this question mainly depends on the purpose
that you have in mind for which you want to measure opposition.

2.5 Simulation Framework

In order to implement negotiation algorithms and perform experiments on
them, we need a framework that allows us to run a simulation of a negoti-
ation between agents. A commonly used framework for this is the NegMas
platform [34].

However, for this book we have implemented a very simple, toy-world
negotiation simulator in Python. It can be downloaded from the web page
of this book:
https://www.iiia.csic.es/~davedejonge/intro_to_nego

It does not rely on any libraries so you don’t need to install anything, ex-
cept of course Python itself, and any development environment that is suit-
able for Python. We will use this simulator for various exercises throughout
this book.

https://www.iiia.csic.es/~davedejonge/intro_to_nego
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Exercise 1. Download the python code of the NegoSimulator and run
the file negoSimulator.py. This will run a simulation of a negotiation
between two agents that just make random proposals.
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Chapter 3

Negotiation Strategies

We are now finally ready to discuss how we can actually implement a ne-
gotiation algorithm. This is probably the most important chapter of this
book. We will describe several possible strategies and we will see that each
of them has its own advantages and disadvantages.

The goal of this chapter is to discuss how we can develop our own agent,
that will be able to negotiate with arbitrary unknown opponents. We will
here always follow the convention that our agent is denoted as a1, while its
opponent is denoted as a2.

It is important to understand that the only goal of our agent is always
to maximize its own utility, so it does not care about other concepts such
as fairness or social welfare, as explained in Section 2.2.3.2, and we assume
the same for the opponent.

There are many kinds of negotiation scenarios that we could consider,
but in this chapter we will always make the following assumptions:

� Negotiations are bilateral (so our agent is negotiating with only one
opponent).

� Negotiations take place according to the alternating offers protocol
(See Section 2.2.2).

� Each of the two agents involved in the negotiation knows its own utility
function and its own reservation value, but neither of them knows the
utility function or reservation value of the other.

� The offer space Ω is finite.
� The agents have a finite deadline T for the negotiations.
� There is no maximum number of negotiation rounds (or equivalently,
N =∞).

� There are no discount factors (or equivalently, the discount factors are
equal to 1).

41
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On the other hand, we will not make any assumptions about whether the
negotiation domain is a single-issue or multi-issue domain, nor about the
type of utility functions the agents have (linear or non-linear).

We make these assumptions because they yield the simplest types of
negotiation scenarios that are still interesting enough to allow us to discuss
the most commonly used negotiation strategies. More advanced negotiation
scenarios will be discussed later on in this book.

3.1 The BOA Model

When implementing a negotiation algorithm, it is often useful to think of it
as consisting of three separate components:

� A Bidding strategy: a strategy to determine when our agent will
propose which offer to the opponent.

� An Opponent modeling algorithm: an algorithm that allows our
agent to approximately learn the opponent’s utility function and/or
its bidding strategy.

� An Acceptance strategy: A strategy to determine which proposals
received from the opponent should be accepted by our agent and which
ones should be rejected.

This model is known as the BOA model [6]. A typical BOA agent would be
implemented as follows:

1. Receive an offer ωrec proposed by the opponent.
2. Use the opponent modeling algorithm to update a model of the oppo-

nent’s strategy and utility function, based on the received proposal.
3. Use the bidding strategy, in combination with the model of the oppo-

nent, to determine which counter offer ωnext to propose next.
4. Use the acceptance strategy to determine whether or not to accept the

received offer ωrec. If yes, then accept ωrec, if not, then propose ωnext.

An implementation in pseudo-code is displayed in Algorithm 1. In the fol-
lowing sections we will present more specific strategies, but they all follow
the same structure. One thing that may seem counter-intuitive, is that this
algorithm first decides which offer to propose next, before it decides whether
or not to accept the received offer. This is, because the decision whether or
not the accept the received proposal often depends on which proposal you
are going to make next.

In the following section we will discuss various bidding strategies and
present some example implementations in pseudo-code. These examples will
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Algorithm 1 BOA Agent for the Alternating Offers protocol. Generic im-
plementation of a method that is called every turn and determines whether
the agent should accept the last proposal received from the opponent or
reject it and, in case of rejection, which counter-offer to propose next.

Input:
Ω ▷ The offer space.
u1 ▷ The agent’s own utility function.
rv1 ▷ The agent’s own reservation value.
T ▷ The deadline.
M ▷ A model of the opponent.
t ▷ The current time.
h ▷ The history: a list containing all proposals that

have so far been proposed by both agents, sorted
in chronological order.

ωrec ▷ The offer last proposed by the opponent (if any).
Note that it is also contained in the history h,
but for clarity we also display it here separately.

// OPPONENT MODELING
// First, update the opponent model

1: M← updateOpponentModel(Ω, T,M, t, ωrec)

// BIDDING STRATEGY
// Next, apply a bidding strategy to select the next offer to propose.

2: ωnext ← biddingStrategy(Ω, u1, rv1, T,M, t, h)

// ACCEPTANCE STRATEGY
// Then, determine whether or not to accept the opponent’s last
// proposal. We store this decision in a boolean variable acceptOffer .

3: acceptOffer ← acceptanceStrategy(Ω, u1, T,M, t, ωrec, ωnext)

// RETURN SELECTED ACTION
//Finally, return the selected action (accept or propose).

4: if acceptOffer then
5: Return (a, ωrec)
6: else
7: Return (p, ωnext)
8: end if
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also include various acceptance strategies, but we will not discuss them yet
because we defer that discussion until Section 3.3. Furthermore, opponent
modeling algorithms will be discussed in Chapter 4.

3.2 Bidding Strategies

In this section we will discuss the various negotiation strategies that have
been studied in the literature. These strategies can be classified into the
following three categories:

1. Time-based strategies.

2. Adaptive strategies.

3. Imitative strategies.

We certainly do not claim that these are the only possible strategies, but
they are the most commonly studied ones. In fact, in their seminal paper [22]
Faratin et al. also proposed a fourth type of strategy, known as a resource-
based strategy, but these seem to have been given considerably less attention
in the literature, so we will not discuss them in this book.

The basic idea behind all three types of strategy above is the same: our
agent starts by proposing an offer that gives the highest possible utility to
itself but, as time passes, our agent will propose offers that yield less and less
utility to itself, which will hopefully make it more likely for the opponent
to accept one of those offers. Every time an agent makes a new proposal
that yields less utility to itself than any of its previous proposals, we say the
agent is making a concession, or that the agent is conceding.

The big question is how to determine how much to concede in every
turn. On the one hand, our agent obviously should not concede too much,
because its aim is to make a deal that gives itself the highest possible utility.
An agent that concedes too much will only make deals that yield very little
utility. But on the other hand, if our agent doesn’t concede enough, there
is the risk that it may not come to any agreement at all, which would often
result in even less utility. Therefore, the key to a strong negotiation strategy
is to make exactly the right trade-off between conceding enough, and not
conceding too much. In the rest of this book we will refer to a strategy that
concedes very little as a hardheaded strategy, while we will refer to a
strategy that concedes very much as a conceding strategy.
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3.2.1 Time-Based Strategies

Time-based strategies are the simplest kind of negotiation strategy. A time-
based strategy makes use of a function λ : R→ R, known as the aspiration
function, which would typically be strictly decreasing. This aspiration
function controls the amount of concession the agent makes as a function
of time. Specifically, the idea is that at any given time t our agent a1 will
propose an offer ω that concedes as much as possible, under the constraint
that his utility value u1(ω) must remain greater than, or equal to λ(t).

Time-based agents can be either hardheaded or conceding, depending
on the shape of the aspiration function. The faster λ decreases, the more
conceding the agent will be. We will discuss this in more detail below.

3.2.1.1 Choosing the Next Offer to Propose

Given an aspiration function λ, we need to implement a precise rule how to
choose the next offer to propose ωnext based on this function. One example
would be to do it according to the following expression:

ωnext = argmax
ω∈Ω

{ û2(ω) | u1(ω) ≥ λ(t) ∧ ω ̸∈ Ωprop
t } (3.1)

where û2 is an estimation that our agent a1 makes of the opponent’s utility
function u2, by means of its opponent modeling algorithm. The details
about how such opponent modeling techniques work will be discussed in
Chapter 4. For now, we will just see it as a ‘black box’ that magically gives
us an approximation of the opponent’s utility function. Furthermore, Ωprop

t

is the set off all offers that have already been proposed by a1 before time t.

Ωprop
t := {ω ∈ Ω | ∃t′ ∈ [0, t] : (1, p, ω, t′) ∈ h} (3.2)

In Equation (3.1) we can clearly see how λ(t) controls the trade-off between
demanding a high utility for yourself and conceding more utility to the op-
ponent. On the one hand our agent is maximizing the opponent’s estimated
utility û2, but on the other hand this is restricted by the constraint that our
agent should not propose any offer that yield less utility than λ(t).

The constraint ω ̸∈ Ωprop
t ensures that, if the best candidate has already

been proposed, then instead of repeating that proposal, our agent will pro-
pose the second best candidate. After all, the opponent modeling algorithm
may not be accurate, so even if û2(ω) is greater than û2(ω

′) it may happen
that the opponent actually prefers ω′, so, if it has the chance, our agent
should also try to propose ω′.
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Of course, it may happen that there is no offer at all that satisfies the
criteria, because all offers for which u1(ω) ≥ λ(t) holds have already been
proposed. In that case our agent can simply repeat the same proposal as
in the last turn, or propose an arbitrary one that it has already proposed
before.

The main disadvantage of Eq. (3.1), however, is that it depends on having
an accurate opponent modeling algorithm. Therefore, alternatively, one can
instead use the following expression.

ωnext = argmin
ω∈Ω

{ u1(ω) | u1(ω) ≥ λ(t) ∧ ω ̸∈ Ωprop
t } (3.3)

That is, it picks the offer with the lowest utility value that is still greater
than or equal to λ(t). There are two scenarios in which this alternative
approach would make sense:

1. In domains where the utility functions of the two agents are strongly
negatively correlated (that is, domains in which any offer that yields
high utility to our agent, yields low utility to the opponent, and vice
versa).

2. In domains with a very small offer space.

An example of the first scenario is the case where a buyer and a seller
negotiate the price of a car, or any other split-the-pie domain. In such
cases, finding the offer that yields the highest utility to the opponent is
(approximately) equivalent to finding the offer that yields the lowest utility
to our agent. So, Eq. (3.3) would yield approximately the same proposals as
Eq. (3.1), but without using any opponent modeling algorithm. Of course,
the problem is that we have to know that the utility functions are strongly
correlated, so we need to have at least some prior knowledge about the
opponent’s utility function.

In the second scenario Eq. (3.3) may work, because there is enough time
for our agent to propose all the offers, one by one. For example, if it takes
about 100 milliseconds for an agent to make a proposal, and the deadline is
set to 1 minute, then there is time to propose 6,000 different offers. So, if
the offer space contains less than 6,000 different offers, then there is enough
time for the two agents to propose all offers. In that case this approach may
work even when there is no strong correlation between the utility functions,
because it simply doesn’t matter if our agent sometimes proposes offers
that are bad for the opponent. If there is a better offer available, then our
agent will simply propose that offer in any of the following turns. On the
other hand, if the domain is too large (or the deadline too short), then this
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Figure 3.1: Aspiration functions with α = 1, β = 0, T = 1, and several
different values for γ.

approach may fail because our agent cannot propose all offers, and therefore
risks failing to propose those offers that are acceptable to the opponent.

3.2.1.2 Choosing the Aspiration Function

The aspiration function can be any monotonically decreasing function, but
a good example would be the following:

λ(t) = (α− β) · 1− γ1−
t
T

1− γ
+ β (3.4)

where T is the deadline of the negotiations, and α, β and γ are three param-
eters that can be freely chosen, but with α > β and γ > 0. We have plotted
this expression in Figure 3.1 for various different values of γ. An example
implementation of a time-based agent is displayed in Algorithm 2.

Let us now discuss how to interpret the parameters α, β, and γ, and how
to choose their values. For this, first note that if t = 0 then we have λ(0) = α.
Therefore, α represents the minimum utility our agent will demand for itself
at the start of the negotiations. Similarly, if t = T then we have λ(t) = β.
This means that β represents the utility our agent will demand for itself at
the end of the negotiations, when the deadline is near. We will call this the
target value. A high target value represents a hardheaded strategy, while
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Algorithm 2 Time-based bidding Strategy.

Parameters: α, β, γ
Input:
Ω ▷ The offer space.
u1 ▷ The agent’s own utility function.
T ▷ The deadline.
t ▷ The current time.
h ▷ The history of all proposals made so far.
ωrec ▷ The offer last proposed by the opponent (if any).

//OPPONENT MODELING
1: M← updateOpponentModel(Ω, T,M, t, ωrec)
2: û2 ← getEstimatedOpponentUtility(M)

// BIDDING STRATEGY
// Calculate the aspiration level.

3: λ← (α− β) · 1−γ1−t/T

1−γ + β
// Obtain the set of offers we have already proposed.

4: Ωprop ← getOffersProposedByUs(h)
// Find the next offer to propose.

5: ωnext ← argmaxω∈Ω{û2(ω) | u1(ω) ≥ λ ∧ ω ̸∈ Ωprop}

// ACCEPTANCE STRATEGY
// Get the last proposal received from the opponent, and accept it if
// it yields more utility to us than our aspiration level.

6: acceptOffer ← u(ωrec) ≥ λ

// RETURN SELECTED ACTION
7: if acceptOffer then
8: Return (a, ωrec) //accept the received offer
9: else

10: Return (p, ωnext) //propose a new offer
11: end if
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a lower target value represents a conceding strategy. Finally, the parameter
γ determines how quickly the agent concedes from α to β.

Typically, the value chosen for α is exactly the utility of the offer that
the agent prefers most: α = u1(ω

max
1 ). After all, a typical negotiator would

start with the proposal that yields the highest utility for itself. While it is
certainly possible to start with a lower offer, there does not seem to be much
reason to do so. So, the other two parameters are more important.

Regarding the value for β, it should be obvious that it should always be
greater than the agent’s reservation value, because our agent should never
propose any offer that yields less utility than that. One common choice is
to set β exactly equal to the reservation value. The reasoning behind this
is that making a deal that is just slightly above the reservation value is
always better than making no deal at all, and thus one should be willing to
concede all the way to the reservation value as the deadline gets close. While
this reasoning may make sense if we focus only on one single negotiation in
isolation, this choice is actually not optimal at all if we consider that our
agent may be involved in many different negotiations and that our opponents
may remember our agent’s behavior from previous encounters and may be
learning how to negotiate optimally against our agent.

The problem is this: if our agent always chooses β = rv1, then its
opponents may anticipate this. That is, the opponents know that our agent
will be conceding all the way to its reservation value and therefore they can
exploit it by simply not conceding at all, or very little, and waiting until the
very last moment before accepting any of our agent’s proposals.

For example, consider a split-the-pie domain where the maximum utility
is 1, and our reservation value is 0. If our agent plays a strategy with β = 0
and the opponent chooses a strategy with β = 0.99 then all negotiations
would end with an agreement that gives our agent a utility of 0.01 and the
opponent 0.99 (assuming such an offer exists).

It is therefore often wiser to choose a higher target value (i.e. choose a
more hardheaded strategy). This may sometimes cause the negotiations to
fail, but in the long run that may actually be a good thing, because it sends
a signal to our opponents that they will need to make concessions if they
want to make an agreement with our agent.

On the other hand, choosing the target value too high will not work
well either. It could work against a very conceding time-based agent (i.e.
one with a low target value), but it will fail to come to an agreement if
the opponent also chooses a high target value. For example, if both agents
choose a target value of 0.99 (when the maximum utility is 1), then they
can only come to an agreement if there exists an offer that yields a utility
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of 0.99 to both agents. It is rare to encounter a negotiation domain where
this is the case.

Figure 3.2 visualizes the evolution of the aspiration levels of two time-
based agents during a negotiation. The aspiration level of a1 is indicated
with a vertical blue line that over time moves from the right to the left, while
the aspiration level of a2 is indicated with a horizontal blue line that over
time moves from the top to the bottom. Note that in this example, a1 follows
a conceding strategy, while a2 follows a hardheaded strategy. We see that
they end up with an agreement that yields more utility to the hardheaded
agent than to the conceding agent.

The parameter γ is the concession parameter. It determines how fast
our agent will concede towards its target value. If γ is very small (e.g. 0.01)
our agent will initially concede very slowly, as we can see in Figure 3.1, and
only start making large concessions towards the end of the negotiations. On
the other hand, if γ is very large, our agent will immediately start making
large concessions. Finally, a value of γ = 1 represents an agent that concedes
linearly.1

In order to exploit the opponent as much as possible, our agent should
make sure it concedes slower than the opponent. This suggest that we would
always want a low value of γ. However, if we choose γ too low, then our agent
may start conceding so late, that by the time it finally makes a substantial
concession there is no more time for the opponent to accept it.

For example, suppose we choose an intermediate target value of β = 0.5,
but our concession parameter is so low, that at 10 milliseconds before the
deadline the aspiration value is still at λ(t) = 0.90. While in theory the
aspiration level will continue to decrease to 0.5 in the last 10 milliseconds,
this time might not be enough for our agent to actually exchange more
proposals and come to an agreement. After all, every time our agent makes
a proposal, it will take a small amount of time for that message to arrive at
the opponent and then the opponent will still need some time to process it,
and to send an ‘accept’ message back. This means that the optimal value of
γ largely depends on the speed at which the agents can send messages and
at which they are able to process them. In other words, it largely depends
on practical considerations related to the infrastructure on which the agents
are implemented.

Furthermore, if we choose γ very low, then our agent’s aspiration level
will remain very high for a long time, which means that for a long time there

1Technically, the expression in Eq. 3.4 is not defined for γ = 1, but it can be shown
that limγ→1 f(t) = (α− β) · (1− t/T ) + β, which is a linear function of t.
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might not be any agreement possible. Then, when the deadline gets near,
our agent will suddenly concede very fast towards its target value, meaning
that the only possible agreement would be one close to the target value. But
in that way we might miss out on any opportunities to obtain a better deal.
Our agent would only be able to make a deal near its target value, or no deal
at all. By choosing a somewhat higher value of γ our agent has the time to
propose several intermediate offers that yield utilities of, say, 0.8, 0.7 and
0.6, which could be accepted by the opponent before our agent reaches its
target level.

Another reason why a low value of γ might not be optimal is when
there are discount factors (see Section 2.2.5), because in that case we would
prefer our agent to come to an agreement as quickly as possible. Yet another
example could be in the case that the opponent is participating in multiple
negotiations in parallel. For example, when a seller has one item to sell, and
is negotiating with multiple potential buyers at the same time. In that case
our agent, as a buyer, would also want to come to an agreement as soon as
possible, before the seller sells the item to one of the other buyers.

Time-based strategies with a low value of γ, but with β = rv1 are also
known as Boulware strategies.

Finally, it should be noted that Eq. (3.4) is sometimes adapted so that
the agent reaches its target level already a bit before the deadline, at a time
T ′ slightly less than T , which we will call the target time. After the target
time, the aspiration level will just remain constant:

λ(t) =

{
(α− β) · 1−γ1−t/T ′

1−γ + β if t ∈ [0, T ′]

β if t ∈ [T ′, T ]
(3.5)

This is to ensure that our agent will indeed concede all the way to its target
level, but not any further. Furthermore, it ensures that after a1 proposes
its ultimate offer (with utility equal to or very close to β) at time T ′ so that
there is enough time left for the opponent to accept that offer.
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(a) Aspiration levels at t/T = 0.2
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(b) Aspiration levels at t/T = 0.4
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(c) Aspiration levels at t/T = 0.6
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(d) Aspiration levels at t/T = 0.8

Figure 3.2: Negotiation between a conceding agent (a1) and a hardheaded
agent (a2). Their aspiration levels are indicated with a vertical blue line
and a horizontal blue line respectively. We see that the aspiration level
of the conceding agent drops much further than the aspiration level of the
hardheaded agent. The negotiations continue until they reach a point at
which there is an offer that is acceptable to both agents. That is, when
there is an offer for which its utility vector lies above the horizontal blue
line, as well as to the right of the vertical blue line. In this example that
happens at t/T = 0.8. Note that the agreement yields more utility to the
hardheaded agent than to the conceding agent.
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Exercise 2. Time-based Agent. Use the NegoSimulator frame-
work (Section 2.5) to implement an agent that applies a time-based
negotiation strategy. Note that the framework already comes with
the source code of a RandomAgent, so you can just copy its code and
adapt it according to Algorithm 2.
Since we haven’t discussed opponent modeling algorithms yet, you
can use Equation (3.3) to determine the next offer, which doesn’t
require opponent modeling.
Alternatively, you can use the DummyOpponentUtilityModel that
comes with the framework. This is a fake opponent model that takes
the opponent’s real utility function as its input and returns a random
approximation of that function.
Run several negotiations between time-based agents and experiment
with different parameter settings. Which values for the parameters
α, β and γ give the best results?

3.2.2 Adaptive Strategies

We will now describe another type of strategy, known as an adaptive strat-
egy. Adaptive strategies have probably received the most attention in the
literature, and most agents that were successful in the various ANAC com-
petition have been of this type.

In order to explain this type of strategy, let us first suppose that our
opponent a2 plays a time-based strategy with target value β2. This means
that, if we wait long enough, the opponent will be willing to propose or
accept any offer ω for which u2(ω) ≥ β2. Now, let ω∗ denote the offer that
maximizes a1’s own utility u1 among those offers. That is:

ω∗ := argmax
ω∈Ω

{u1(ω) | u2(ω) ≥ β2} (3.6)

This means that a1 cannot possibly receive any utility higher than u1(ω
∗).

After all, by Eq. (3.6) we know that for any offer ω that yields a higher utility
to a1, we would have u2(ω) < β2, and agent a2 would never propose or accept
any such offer, by definition of β2. On the other hand, however, it also means
that if we get close enough to the deadline, then a2 will be willing to accept
the offer ω∗ and therefore, ideally, a1 should not propose or accept any offers
that yield less utility than u1(ω

∗). So, against this opponent, a theoretically
optimal strategy for a1 would be one that concedes no further than u1(ω

∗).
For example, a time-based strategy with target value β1 = u1(ω

∗).
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Unfortunately, however, there are two problems with this idea. Firstly,
a1 typically does not know the target value β2 of its opponent, and secondly
a1 typically also does not know the utility function u2 of its opponent.
Therefore, a1 cannot directly determine the ideal offer ω∗.

Instead, however, a1 can try to infer it, using opponent modeling algo-
rithms (which we will discuss in Chapter 4). The idea is then simple: every
time our agent receives a proposal from the opponent, our agent uses it to
update the opponent model to obtain a more accurate approximation of u2
and β2, which it can then use to obtain a better prediction of ω∗. Then,
our agent sets its target value equal to u1(ω

∗) (unless it is below our agent’s
reservation value, of course), and finally it uses this to determine our aspi-
ration level at that moment, according to some formula such as Eq. (3.4).

This approach is called an adaptive strategy, because it tries to adapt to
its opponent. Just like a time-based strategy it applies an aspiration level
that decreases over time, but the difference is that the target value is not
constant. Instead, it is updated every time we gain more information about
the opponent’s strategy and utility function.

In theory, if we are 100% sure that our opponent is using a time-based
strategy, and we have an opponent modeling algorithm that can predict ω∗

with 100% accuracy, then an adaptive strategy is the theoretically optimal
strategy against that opponent (in game theory terminology: it is a best
response, see Chapter 5). After all, it concedes exactly enough to ensure a
deal, but no further than that, so it always achieves the maximum amount
of utility that can possibly be achieved against that opponent.

Of course, in practice we don’t really have a 100% accurate opponent
modeling algorithm. But besides that, another problem with the reasoning
above is that it assumes the opponent does not know anything about our
agent. The problem, is that if the opponent can somehow anticipate that
we are using a purely adaptive strategy, then he may be able to exploit
this knowledge by choosing a very hardheaded strategy. For example, in
a split-the-pie domain where both agents have a reservation value of 0, he
could choose a target value of β = 0.99. If we then apply a purely adaptive
strategy, then our agent would always come to an agreement for which it
gets no more than 0.01 utility.

Therefore, in practice, many adaptive strategies have a ‘minimum target’
βmin and they make sure that their target β is never lower than that. That
is:

β = max{ u1(ω
∗) , βmin }

This means that such strategies are more of a hybrid between a time-based
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strategy and a purely adaptive strategy.
Furthermore, since our opponent modeling will probably not be 100%

accurate, we may need to add another term ϵ to our target utility u1(ω
∗),

where ϵ > 0 and where ϵ decreases as we gain more and more knowledge
about the opponent from the offers it proposes to us. So we would get:

β = max{ u1(ω
∗) + ϵ , βmin }

This is to prevent that an inaccurate estimation at the beginning of the
negotiations causes our agent to concede too much.

Yet another problem with adaptive strategies, is that they kind of assume
the opponent is following a purely time-based strategy, which allows the
adaptive strategy to predict the optimal target value. This, however, gets
much more complicated if the opponent is also playing an adaptive strategy.
In that case we have two agents that are each trying to adapt to the other.

A basic implementation of an adaptive strategy is displayed in Algo-
rithm 3.

Exercise 3. Adaptive Agent. Use the NegoSimulator framework
to implement an agent that applies an adaptive negotiation strategy.
Note that the framework already comes with the source code of a
RandomAgent, so you can just copy its code and adapt it according
to Algorithm 3.
Since we haven’t discussed opponent modeling algorithms yet, you
can again use the DummyOpponentUtilityModel that comes with the
framework (See Exercise 2) to estimate the opponent’s utility func-
tion.
Furthermore, to estimate the optimal target value β∗ you can use the
SimpleOpponentStrategyModel that also comes with the NegoSimu-
lator framework. This class implements a very naive linear extrapo-
lation algorithm to predict how far the opponent will concede.
Experiment with several parameter settings and run a number of ne-
gotiations between your adaptive agent and your time-based agent(s)
from Exercise 2.

3.2.3 Imitative Strategies

Above, we have seen that if we know the opponent plays a time-based strat-
egy, then the best response for our agent would be to play an adaptive
strategy. On the other hand, if the opponent is playing an adaptive strategy,



56 CHAPTER 3. NEGOTIATION STRATEGIES

Algorithm 3 Adaptive Strategy.

Parameters: α, βmin, γ
Input:
Ω ▷ The offer space.
u1 ▷ The agent’s own utility function.
rv1 ▷ The agent’s own reservation value.
T ▷ The deadline.
M ▷ A model of the opponent.
t ▷ The current time.
h ▷ The history.
ωrec ▷ The offer last proposed by the opponent (if any).

//OPPONENT MODELING
//Update the opponent model.

1: M← updateOpponentModel(Ω, T,M, t, ωrec)
2: û2 ← getEstimatedOpponentUtility(M)

//Use the opponent model to estimate the optimal target value.
β̂∗ ← estimateOptimalTarget(M)

//BIDDING STRATEGY
//Calculate the aspiration value

3: β ← max{β̂∗ , βmin}
4: λ← (α− β) · 1−γ1−t/T

1−γ + β
// Obtain the set of offers we have already proposed.

5: Ωprop ← getOffersProposedByUs(h)
// Find the next offer to propose.

6: ωnext ← argmaxω∈Ω{û2(ω) | u1(ω) ≥ λ ∧ ω ̸∈ Ωprop}

// ACCEPTANCE STRATEGY
// Get the last proposal received from the opponent, and accept it if
// it yields more utility to us than our aspiration level.

7: acceptOffer ← u(ωrec) ≥ λ

// RETURN SELECTED ACTION
8: if acceptOffer then
9: Return (a, ωrec)

10: else
11: Return (p, ωnext)
12: end if
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then the best choice for our agent would be to play a hardheaded time-based
strategy which can exploit the opponent’s adaptiveness. Now, the question
is how to choose between these two strategies when we don’t know what
strategy our opponent will choose.

If one agent plays a hardheaded time-based strategy and the other plays
an adaptive strategy, then the time-based agent would typically receive a
higher utility than the adaptive agent. Therefore, one might be inclined
to argue that choosing a hardheaded time-based strategy is better. But
the problem is that the opponent could follow exactly the same reasoning,
and therefore choose a hardheaded strategy as well. But then we end up
with two agents each playing a hardheaded strategy, and in that case it is
unlikely that the two agents will come to an agreement, since neither of the
two would be willing to make any considerable concessions.

For this reason, some might reason that it is better to play an adaptive
strategy. But then again, the opponent might reason in the same way and
also choose an adaptive strategy. In that case we would miss out on the
opportunity of exploiting him. Furthermore, if we always choose an adaptive
strategy, then that could be exploited by the opponent by always choosing
a hardheaded strategy. In other words, choosing between a hardheaded
strategy and an adaptive strategy is a bit of a chicken-and-egg problem.
The problem is that each of these strategies work well against the other, but
neither of them is optimal when the opponent picks the same strategy.

We have seen that one way out would be to choose a hybrid approach
that applies an adaptive strategy with a minimum target βmin, but then
we still need to answer the question how to choose the optimal value for
βmin. Another approach would be to flip a coin and decide between the two
strategies randomly. We will discuss this option in more depth in Chapter 5.

In this section, however, we will discuss an entirely different type of strat-
egy that is designed specifically to play well against itself. Such strategies
are known as imitative strategies [22]. Rather than trying to adapt to
the opponent (play hardheaded when the opponent plays conceding and vice
versa), imitative agents instead try to imitate the opponent. That is, when
the opponent is hardheaded then play hardheaded as well, and when the
opponent is conceding, play conceding as well. The rationale behind this, is
that if the opponent plays too hardheaded, then our agent can ‘punish’ it
by also playing hardheaded, and when the opponent plays conceding, then
our agent rewards the opponent by playing conceding as well.

Of course, this is all based on the assumption that the opponent does
not play a rigid time-based strategy, but rather observes our agent’s actions
and is able to adapt itself to our agent’s strategy.



58 CHAPTER 3. NEGOTIATION STRATEGIES

We will discuss two kinds of imitative strategies, namely the Classic
Tit-for-Tat strategy and the MiCRO strategy.

3.2.3.1 Classic Tit-for-Tat

In game theory, Tit-for-That (TFT) strategies are strategies in which a
player imitates the moves of the other player. This strategy has been proven
especially useful in the iterated prisoner’s dilemma [2].

In the context of negotiation, this would mean that whenever our oppo-
nent makes a large concession, our agent replies to this by also making a
large concession, and whenever our opponent makes a small concession (or
no concession at all), then our agent replies with a small concession as well
(or no concession at all).

Before we continue, recall that Ωprop
t denotes the set of offers that have

been proposed by our agent a1 up until time t (see Eq.(3.2)). Similarly, we
define Ωrec

t to be the set of offers that have been received by our agent a1
up until time t. In other words, it is set of offers that have been proposed
by the opponent a2 up until time t. Formally:

Ωrec
t := {ω ∈ Ω | ∃t′ ∈ [0, t] : (2, p, ω, t′) ∈ h} (3.7)

Now, in order to give a concrete implementation of a classic tit-for-tat
negotiation strategy, we need a function σ1 that, given Ωprop

t returns a value
σ1(Ω

prop
t ) ∈ R that measures how much agent a1 has so far conceded. Fur-

thermore, we need a function σ2 that, given Ωrec
t returns a value σ2(Ω

rec
t ) ∈ R

that measures the amount of concession made by a2.

σ1, σ2 : 2
Ω → R

In general, for any agent, when we say it makes a large ‘concession’, this
can be interpreted in two ways: it can mean that it makes a proposal with
high utility for the opponent, or it can mean that it makes a proposal with
low utility for itself. In a single-issue negotiation where the agents’ interests
are strictly opposing, such as the bargaining over the price of a second-hand
car, we don’t have to worry about this distinction, because any concession
of the first type is automatically also one of the second type and vice versa.

However, in more complex negotiation scenarios, where not every offer
is Pareto-optimal, and where the agents do not know each others’ utility
function, these two concepts are different.

This means that for σ1 there are two obvious choices. Namely, we could
define it in terms of our agent’s own utility, or in terms of our opponent’s
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(estimated) utility:

σ1(Ω
prop
t ) = max {u1(ωmax

1 )− u1(ω) | ω ∈ Ωprop
t } (3.8)

or:

σ1(Ω
prop
t ) = max {û2(ω)− û2(ω

min
2 ) | ω ∈ Ωprop

t } (3.9)

where û2 is an estimation of the opponent’s utility function u2, made by
an opponent modeling algorithm and where ωmax

1 and ωmin
2 are defined by

Equations (2.1) and (2.2).

In the first case, our ‘concession’ corresponds to the lowest amount of
utility our agent has so far asked for itself, while in the second case it corre-
sponds to the highest amount of utility it has so far offered to the opponent.

Similarly, we can measure the opponent’s concession using either our
agent’s own utility function, or the opponent’s estimated utility function:

σ2(Ω
rec
t ) = max {u1(ω)− u1(ω

min
1 ) | ω ∈ Ωrec

t } (3.10)

or:

σ2(Ω
rec
t ) = max {û2(ωmax

2 )− û2(ω) | ω ∈ Ωrec
t } (3.11)

Here, in the first case, the opponent’s ‘concession’ corresponds to the highest
amount of utility the opponent has so far offered to our agent, while in the
second case it corresponds to the lowest amount of utility the opponent has
so far asked for itself.

Note that here, σ2 is a function used by our agent a1 to measure the
opponent’s concession. In other words, it exists in the ‘mind’ of our agent
a1 and the opponent itself may actually use an entirely different function to
measure its own concession (if it even uses a Tit-for-Tat strategy at all).

Whenever it is our agent’s turn, its goal is to propose an offer ωnext

such that the total amount of concession that our agent has made so far
remains slightly higher than our opponent’s. We therefore define, for any
offer ω ∈ Ω, its concession gain:

∆σt(ω) := σ1(Ω
prop
t ∪ {ω}) − σ2(Ω

rec
t )

which allows us to quantify, for any offer ω, the difference between our
agent’s concession after proposing ω and the concession made by the oppo-
nent.

Finally, the Tit-for-Tat strategy chooses our agent’s next offer to propose
ωnext by selecting it from a set of possible offers that satisfy some criterion
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regarding to the concession gain. Again, there is no unique way to do this,
so we provide two examples:

ωnext = argmax
ω

{ u1(ω) | ∆σt(ω) > ϵmin ∧ u1(ω) > rv1} (3.12)

or:

ωnext = argmax
ω

{ û2(ω) | ∆σt(ω) ∈ (ϵmin, ϵmax) ∧ u1(ω) > rv1}(3.13)

where ϵmin and ϵmax are a minimum and a maximum required concession
gain, respectively. In the first case our agent would select the offer that
maximizes its own utility, under the constraint that it should also concede
enough to the opponent. In the second case, our agent would select an offer
that maximizes the opponent’s estimated utility, but that requires we also
limit ourselves to a maximum concession gain, to prevent our agent from
conceding too much.

In each of these expressions, ϵmin can be equal to 0, but ∆σt(ω) must
remain strictly greater than 0. This is, because otherwise if it happens that
both agents have made exactly the same amount of concession, then neither
of them will be willing to concede more, and they get stuck in a deadlock (if
they both use the same strategy). Therefore, each of the two agents should
always strive to concede slightly more than the other.

We have now seen that for a concrete implementation of Tit-for-Tat we
need to make 3 choices: an expression for σ1, an expression for σ2, and a
method to choose ωnext (e.g. Eq. (3.12) or Eq. (3.13)).

At first sight, we might be tempted to choose the expressions that only
depend on our agent’s own utility function (i.e. Eqs. (3.8) , (3.10) and
(3.12)), so that we don’t have to rely on any opponent modeling algorithms.
However, it turns out that this doesn’t work very well. The problem is
that in that case, if both agents make sufficiently small concessions in each
turn, then the final outcome would always be an offer that satisfies u1 ≈
1
2u1(ω

max
1 ) + 1

2u1(ω
min
1 ). This can be seen easily as follows. Suppose for

simplicity that we have a normalized utility function (i.e. u1(ω
min
1 ) = 0 and

u1(ω
max
1 ) = 1). Now, if the opponent a2 makes an offer that yields a utility

of 0.1 to our agent, then our agent a1 would reply with an offer that yields
a utility of 1-0.1=0.9 to itself. Next, if a2 makes a proposal with utility of,
say, 0.3 for a1, then a1 replies with an offer with utility 1-0.3=0.7. Then, if
a2 proposes an offer with utility 0.35, our agent a1 will reply with an offer
that yields 1-0.35=0.65, next, if a2 proposes an offer with utility 0.55 then
a2 replies with an offer that yields 1-0.55 = 0.45. It is easy to see that,
no matter which offers the opponent proposes, this always either converges
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Figure 3.3: An example of a domain with low opposition. Here, the outcome
with u1(ω) = 0.5 is highly unfair for a1, since the opponent would receive
u2(ω) = 0.87 for that same offer. Especially, since there exists a much fairer
offer, here indicated as ω∗, for which both agents would receive 0.7.

to an agreement with utility 0.5 for a1, or the two agents’ proposals don’t
converge at all, which means there will be no agreement.

Now, it happens that in many negotiation domains, if an offer yields
0.5 to one agent, then it yields much more utility to the other agent. This
happens specifically in domains with low opposition, where there exist offers
for which both agents receive a normalized utility greater than 0.5. This is
illustrated in Figure 3.3. In other words, our agent would receive much less
utility than what it could potentially achieve with a better algorithm.

Furthermore, if we already know that that this algorithm can only make
agreements with a utility value of 0.5 for our agent, then we could just as
well play a time-based strategy with target value of β = 0.5. This would
at least give our agent the possibility of reaching agreements with higher
utility.

So, what if we choose one of the other options? Well, if we choose
the opponent’s estimated utility û2 to calculate our own concession σ1 as
well as our opponent’s concession σ2, then we end up with essentially the
same problem. In that case (assuming we have accurate opponent modeling
algorithms), the only possible agreement the agents could make, would be
one with u2(ω) ≈ 0.5. While this may seem good, because such a solution
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would typically yield high utility for our own agent, the problem is that it
would therefore be also less likely that the opponent would be willing to
accept such a deal.

A better idea seems to be to use our own utility to measure our own
concession and the opponent’s utility to measure the opponent’s concession,
or vice versa. In either of these two cases the proposals would converge to
some deal ω with u1(ω) ≈ u2(ω), which would typically be better.

The problem with that, however, is that its success depends on the ac-
curacy of our opponent modeling algorithms. If we cannot estimate u2
accurately, then our agent could be making concessions that are too large,
yielding suboptimal agreements, or it could be making concessions that are
too small, preventing the agents from coming to an agreement at all.

An alternative approach to reach good outcomes using TFT, is to use
relative concessions, instead of absolute ones [8]. By this we mean that
we first pick some ideal outcome ω∗, such as the maximum social welfare
solution, of the Nash bargaining solution (see Section 5.4) and then we
measure concession relative to that ideal outcome:

σ1(Ω
prop
t ) = max { u1(ω

max
1 )− u1(ω)

u1(ωmax
1 )− u1(ω∗)

| ω ∈ Ωprop
t } (3.14)

σ2(Ω
rec
t ) = max { u1(ω)− u1(ω

min
1 )

u1(ω∗)− u1(ωmin
1 )

| ω ∈ Ωrec
t } (3.15)

Note that this does require you to know which outcome ω∗ would be ideal,
which would still depend on the opponent’s utility function. However, it
requires much less knowledge about u2 than if we used Eqs. (3.9) and (3.11).

It may also be worth mentioning that in the paper that originally pro-
posed the TFT negotiation strategy [22], the authors proposed a variant in
which the agents’ concessions were calculated only in terms of the the last
few proposals by each agent, rather than all their proposals up to time t.

As explained before, the main idea of Tit-for-Tat is that it works well
against itself. However, if the opponent uses a hardheaded time-based strat-
egy, then Tit-for-Tat is likely to fail, because neither of the two agents will be
making big concessions. If the opponent applies an adaptive strategy, or a
conceding time-based strategy, Tit-for-Tat will likely come to an agreement,
but it will not be able to exploit the opponent as much as a hardheaded
strategy could have done.

Furthermore, even if we have a good opponent strategy, and the oppo-
nent is indeed using TFT as well, then the success of our agent also heavily
relies on the accuracy of the opponent’s opponent modeling algorithms (i.e.
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the algorithm used by our opponent to estimate our utility function). After
all, the opponent might intend to make an offer that yields a lot of util-
ity to our agent, but due to an inaccurate opponent model he might end
up proposing one that actually yields very low utility to our agent, which
would then respond with a counter-proposal that yields very low utility to
the opponent. This would prevent them to reach an agreement, even though
both agents have the intention to make large concessions.

Exercise 4. Tit-for-Tat Agent. Implement an agent that applies
one of the various Tit-for-Tat strategies explained in this section.
Since we haven’t discussed opponent modeling algorithms yet, you can
use the DummyOpponentUtilityModel that comes with the NegoSim-
ulator framework (See Exercise 2).
Let your agent negotiate against the RandomAgent or against one of
your agents from Exercises 2 and 3, or against a copy of itself.

3.2.3.2 The MiCRO Strategy

We have seen above, that classic TFT strategies depend heavily on the qual-
ity of the opponent modeling algorithms of both agents. However, recently
a new kind of TFT strategy has been proposed based on the idea that our
agent does not know anything about the opponent’s utility function at all
and moreover, that the opponent also does not know anything about our
agent’s utility function [14]. This strategy was called MiCRO, which stands
for Minimal Concession in Reply to new Offers. Despite its simplicity and
the fact that it does not require any opponent modeling at all, it has shown
some remarkably good results.

MiCRO works as follows. Before the negotiations begin, our agent a1
creates a list (ω1, ω2, . . . , ωK) containing all offers in the domain, sorted in
order of decreasing utility for itself. That is, u1(ω1) ≥ u1(ω2) ≥ · · · ≥
u1(ωK). Then, when the negotiations start, our agent will first propose the
offer with highest utility for itself. That is, ω1, which is the first offer on its
list. Then, in the following rounds, every time the opponent makes a new
proposal, our agent will respond by proposing the next offer on its list. So,
it will first propose ω2, then ω3, then ω4, etcetera. However, whenever the
opponent a2 proposes an offer that a2 has already proposed before, a1 will
reply by also repeating an earlier proposal.

More precisely, whenever it is a1’s turn to make a proposal, it counts how
many different offers it has so far received from the opponent (we denote



64 CHAPTER 3. NEGOTIATION STRATEGIES

Algorithm 4 A Classic Tit-for-Tat strategy.

Parameters: ϵmin

Input:
Ω ▷ The offer space.
u1 ▷ The agent’s own utility function.
rv1 ▷ The agent’s own reservation value.
T ▷ The deadline.
M ▷ A model of the opponent.
t ▷ The current time.
h ▷ The history.
ωrec ▷ The offer last proposed by the opponent (if any).

//OPPONENT MODELING
1: M← updateOpponentModel(Ω, T,M, t, ωrec)
2: û2 ← getEstimatedOpponentUtility(M)

//BIDDING STRATEGY
// Get the next offer to propose according to Equation (3.12)
// We split this calculation into two parts:
// 1) Get a set of candidate offers C.
// 2) Find the offer that maximizes our utility.
// Note that the calculation of ∆σt(ω) depends on the chosen
// expressions for σ1 and σ2.

3: C ← { ω ∈ Ω | ∆σt(ω) > ϵmin ∧ u1(ω) > rv1}
4: if C = ∅ then
5: ωnext ← . . . // Use any alternative method to pick an offer here.
6: else
7: ωnext ← argmaxω { u1(ω) | ω ∈ C}
8: end if

//ACCEPTANCE STRATEGY
//Get the last proposal received from the opponent, and accept it if and
//only if it is at least as good as the offer the agent is about the propose.

9: acceptOffer ← u(ωrec) ≥ u(ωnext)

// RETURN SELECTED ACTION
10: if acceptOffer then
11: Return (a, ωrec)
12: else
13: Return (p, ωnext)
14: end if
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this number by n), and how many different offers it has so far proposed
to the opponent (we denote this number by m). That is, n := |Ωrec

t | and
m := |Ωprop

t |. Then, if m ≤ n, our agent will propose ωm+1. On the other
hand, if m > n then it will pick a random integer r such that 1 ≤ r ≤ m
and propose ωr.

An implementation of the MiCRO strategy is given in Algorithm 5.
The intuition behind MiCRO is that, like any other TFT algorithm,

it tries to make a concession whenever the opponent makes a concession.
However, since it assumes neither of the two agents know anything about
the other agent’s utility function, MiCRO does not care how large the op-
ponent’s concessions are. After all, the size of the opponent’s concession
as perceived by our agent says nothing about the size of the concession the
opponent intended to make. The opponent might make a large concession
in terms of its own utility u2, but this may result in a very small concession
measured in our agent’s own utility u1. For the same reason MiCRO never
makes large concessions to its opponent. In fact, it always makes exactly
the smallest possible concession: it just proposes the next offer on its list.
Another difference between MiCRO and classic TFT is that MiCRO uses a
different definition of ‘concession’. That is, even if the opponent’s new pro-
posal offers less utility to a1 than the opponent’s previous proposal, MiCRO
still considers this a concession, as long as it is different from any of the
opponent’s previous offers. After all, if the opponent makes offers in order
of decreasing utility for itself, then every new proposal is indeed a concession
from his point of view.

Note that MiCRO can indeed be seen as a TFT algorithm, with the
following concession measures:

σ1(Ω
prop
t ) = |Ωprop

t |

σ2(Ω
rec
t ) = |Ωrec

t |

and that uses Eq. (3.12) to select the next offer to propose, with ϵmin = 0.
At first sight, it may seem that MiCRO must be very slow in large

negotiation domains, since it makes only minimal concessions. If a domain
contains tens of thousands of offers, then you may therefore expect it to
take a long time before MiCRO has conceded enough for the opponent to be
willing to accept any of MiCRO’s proposals. However, in practice it turns
out to be rather the opposite. When two MiCRO agents negotiate against
each other they typically come to an agreement much faster than most other
negotiation strategies. The reason for this, is that MiCRO does not spend
any time updating any opponent modeling algorithms. In each turn it just
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performs a few very simple calculations and then proposes the next offer on
its list, which makes it very fast.

Another main advantage of MiCRO is that it is very simple to implement,
since it does not require any complicated machine learning algorithms for
opponent modeling and it also does not require any parameters to be fine-
tuned.

However, the biggest advantage of MiCRO, is that it makes a nearly
optimal trade-off. On the one hand it is very hardheaded because it only
makes minimal concessions and only keeps conceding as long as the oppo-
nent also keeps conceding. Yet, unlike hardheaded time-based agents, which
often fail to come to an agreement against other hardheaded agents, MiCRO
almost always comes to an agreement when negotiating against itself. This
is because in that case both agents would always keep making concessions
until sooner or later they reach an agreement.

There are just two possible scenarios where a negotiation between two
agents that both apply the MiCRO strategy would fail. The first scenario is
when one of the two agents has a very high reservation value so at some point
it can’t continue conceding because it has already reached its reservation
value before the agents could reach an agreement. The second scenario
is when the deadline is too short compared to the size of the domain, so
there is no time to concede far enough to reach an agreement. However,
as explained above, MiCRO is typically much faster than other strategies,
so in this scenario many other strategies might also suffer to concede fast
enough.

Apart from these two possible scenarios, the main disadvantage of
MiCRO is that it will still fail to make an agreement against a hardheaded
time-based agent that at some point refuses to concede any further before
they reach an agreement.

Exercise 5. MiCRO. Implement an agent based on the MiCRO
strategy in the NegoSimulator framework and let it negotiate against
the RandomAgent, or against any of the agents from the previous
exercises, or against a copy of itself.

3.3 Acceptance Strategies

In the previous sections we have discussed a number of bidding strategies.
In doing so, we also showed a number of different acceptance strategies in
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Algorithm 5 The MiCRO strategy. Note that offers[m] here corresponds
to ωm+1 in the text.

Input:
offers ▷ A list containing all possible offers, sorted in order

of decreasing utility.
u1 ▷ The agent’s own utility function.
rv1 ▷ The agent’s own reservation value.
h ▷ The history.
ωrec ▷ The offer last proposed by the opponent (if any).

1: m← countUniqueOffersProposedByMe(h)
2: n← countUniqueOffersProposedByOpponent(h)

// If we have not proposed more unique offers than
// the opponent and the next offer on our list is better than rv1,
// then we will propose a new offer.
// We store this decision in a boolean variable readyToConcede.

3: readyToConcede ← m ≤ n and u1(offers[m]) > rv1

//BIDDING STRATEGY
// If we are ready to concede then propose the next offer on the list.
// Otherwise, pick a random offer that we have already proposed before.

4: if readyToConcede then
5: ωnext ← offers[m]
6: else
7: r ← getRandomInteger(0,m) ▷ Pick random integer r with 0 ≤ r < m.
8: ωnext ← offers[r]
9: end if

//ACCEPTANCE STRATEGY
// Determine the lowest utility we are willing to accept.

10: if readyToConcede then
11: λ← u1(offers[m]) ▷ The utility of the offer we are about to propose next.
12: else
13: λ← u1(offers[m−1]) ▷ The lowest utility among all offers we have already proposed.
14: end if
15: acceptOffer ← u(ωrec) ≥ λ

// RETURN SELECTED ACTION
16: if acceptOffer then
17: Return (a, ωrec)
18: else
19: Return (p, ωnext)
20: end if
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the various examples (Algorithms 2–5). In this section we will discuss these
acceptance strategies in a bit more detail.

In the following, let ωnext denote the next offer to make, as decided by
the bidding strategy, and let of ωrec denote the last received offer.

Perhaps the most commonly used acceptance strategy in the literature
is the ACnext strategy that simply accepts ωrec if and only if it is better
than, or equal to ωnext:

Definition 12. The ACnext acceptance strategy accepts if and only if:

u1(ωrec) ≥ u1(ωnext) (3.16)

At first sight, this makes perfect sense, because it simply let the bid-
ding strategy do all the work to decide which offers our agent will consider
acceptable. However, the problem with this strategy, is that it can lead to
somewhat illogical decisions when the strategy is not purely monotonic. By
‘monotonic’ we mean that the offers proposed by the agent keep always keep
decreasing in terms of the utility for that agent. More precisely:

Definition 13. A bidding strategy for agent ai is monotonic, if for any
history h, and any two proposals (i, p, ω, t) ∈ h, (i, p, ω′, t′) ∈ h generated by
that strategy, for which t < t′ we have ui(ω) > ui(ω

′)

While each of the bidding strategies we discussed above in general pro-
poses offers in order of decreasing utility, it is certainly not the case that
every proposal is always followed by a proposal with lower utility. Therefore,
none of these strategies are monotonic.

The problem with ACnext and non-monotonic bidding strategies is illus-
trated in Figure 3.4. Before we explain the problem, we should first highlight
a few important details about this figure. Firstly, note that the vertical axis
does not represent a2’s true utility u2, but rather its estimated utility û2, as
estimated by agent 1’s opponent modeling algorithm. Secondly, note that
we have zoomed in a bit so that the horizontal axis shows only shows values
between 0.65 and 0.77. Finally, note that we have drawn the aspiration lev-
els of agent 1 in the diagram at three different times: t1, t2, and t3, where
t1 < t2 < t3.

Now, let us suppose that our agent a1 uses a time-based strategy, based
on Equation (3.1). Furthermore, suppose that at some time t1 the aspiration
level λ1(t1) of our agent is 0.74 and our agent proposes the offer ω1 with
utility u1(ω1) = 0.79. Next, suppose that agent a2 rejects this proposal, so
after a small amount of time our agent gets to propose a new offer in the next
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turn, at time t2. Meanwhile, our agent’s aspiration level has dropped to, say,
λ1(t2) = 0.69. We see in the diagram that there are several offers with utility
between 0.69 and 0.74 that can now be proposed but, according to Eq. (3.1),
our agent will propose the one with highest estimated opponent utility û2.
This offer is denoted by ω2 and we see that u1(ω2) = 0.7. Again, suppose this
offer is rejected and instead a2 makes a counter-proposal, which is denoted
ωrec in the diagram, with utility u1(ωrec) = 0.71. Then, in the next turn, at
time t3, suppose the aspiration level has dropped to 0.67. Among all offers
with u1(ω) > 0.67 that we have not proposed yet, the one with highest
estimated opponent utility û2 is now ω3, with utility u1(ω3) = 0.7. So, the
bidding strategy will select ω3 to propose next.

Now, if our agent uses ACnext, it will compare ωrec with ω3. This means
our agent will reject ωrec, because ω3 yields more utility. But this clearly
does not make sense, because our agent has already proposed ω2 which
yielded less utility than ωrec. So, if our agent was willing to propose ω2 with
utility 0.7, then it should certainly be willing to accept ωrec with utility 0.71.
In fact, according to its aspiration level it should be willing to propose or
accept any offer with utility higher than 0.67.

Rejecting offer ωrec only makes sense if our agent thinks it could obtain
a better deal in the future, but if that’s the case then our agent should have
never proposed ω2, and its aspiration level should not have dropped to 0.67.

The problem illustrated above can be resolved easily by using the aspira-
tion level itself to make the acceptance decision, rather than using the offer
ωnext that was chosen based on the aspiration level. Indeed, we used this
acceptance strategy in Algorithms 2 and 3. We will denote this strategy by
ACasp.

Definition 14. The ACasp acceptance strategy accepts if and only if:

u1(ωrec) ≥ λ(t) (3.17)

where λ is the aspiration function and t is the time at which the decision is
made.

Of course, the problem with ACasp is that it only works if your bidding
strategy indeed uses an aspiration function. For other bidding strategies,
such as Tit-for-Tat or MiCRO, that do not make use of aspiration functions,
there is another straightforward solution. Namely, to accept any offer that
is better than the offer you are going to propose next, or better than any
of the offers you have already proposed before. We will denote this strategy
by AClow.
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Definition 15. The AClow acceptance strategy accepts if and only if:

u1(ωrec) > min{u1(ω) | ω ∈ Ωprop
t ∪ {ωnext}} (3.18)

where t is the time at which the decision is made and Ωprop
t denotes the set

of offers so far proposed by our agent (as defined by Eq. (3.2)).

Note that we used this acceptance strategy in our implementation of
MiCRO in Algorithm 5 (although this may not be immediately obvious
from the notation).

The strategies ACnext, ACasp and AClow are all based on the same prin-
ciple: only accept an offer if you would also be willing to propose that same
offer yourself. While this principle makes sense, it may be somewhat too
strict when the negotiations are close to the deadline. In that case it can
be beneficial to even accept offers that are actually somewhat less valuable
than those offers that you are willing to propose.

The idea is that near the deadline, proposing an offer is more risky than
accepting an offer, because an acceptance yields a guaranteed amount of
utility, while a proposal could be rejected by the opponent, so it brings
along the risk that the negotiations may fail. The closer we get to the
deadline, the more important this risk becomes.

Therefore, one could argue that when you decide to make a proposal, you
should ask for a bit more utility than what you would be willing to accept, in
order to offset the increased risk. This can modeled by a parametrized ver-
sion of ACnext [7], which has two parameters α and β and which is denoted
by ACnext(α, β).

Definition 16. Let α, β ∈ R be two real numbers. Then the ACnext(α, β)
acceptance strategy accepts if and only if:

α · u1(ωrec) + β ≥ u1(ωnext) (3.19)

Note that if α = 1 and β = 0, then ACnext(α, β) is just identical to
ACnext. Typically, the values of α and β would both be non-negative. While
there is no mathematical reason why they could not be negative, there does
not seem to be any obvious reason to ever consider such values. After all,
it does not make a lot of sense to propose an offer with a utility of, say,
u1(ω) = 0.6 if you are not willing to accept an offer with that same amount
of utility, or better. The same generalization can also be applied to ACasp or
AClow. That is, we could define ACasp(α, β) or AClow(α, β) in an analogous
manner. Of course, an obvious disadvantage of such parametrized strategies,
is that it requires choosing the right values of α and β, which may be difficult.
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Figure 3.4: The problem with ACnext. At t1 agent 1 proposes ω1, at t2
agent 1 proposes ω2, and at t3 agent 1 has the choice between proposing ω3

or accepting ωrec. According to ACnext, the agent should reject. However,
this does not make sense, since he has already proposed ω2 which is actually
worse than ωrec.

Another reason why it could be advantageous for our agent to accept
offers that yield less utility than the offers it is willing to propose, is that
this would allow our agent to apply a very hardheaded bidding strategy, in
order to entice the opponent to make large concessions, while at the same
time it still allows our agent to come to an agreement in case the opponent
is not willing to make such concessions. In other words, it allows our agent
to pretend to be more hardheaded than what he really is.

Exercise 6. AClow. Adapt the implementation of your Tit-for-Tat
agent from Exercise 4 to apply the AClow acceptance strategy instead
of ACnext.
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3.4 Reproposing

We will now discuss a simple technique that can be added on top of any of the
previously described negotiation strategies, that can make them somewhat
better. This approach was described, for example, in [43] and in [15].

Let us explain it with an example. Suppose that we have a negotiation
domain with 10 possible offers: Ω = {ω1, ω2, . . . , ω10} and suppose that our
agent’s utility function is given by u1(ωj) = 0.1j. That is, u1(ω1) = 0.1,
u1(ω2) = 0.2, etcetera, so our agent’s most preferred offer is ω10. Further-
more, suppose that our agent a1 follows a time-based strategy with a linear
aspiration function (γ = 1) and without opponent modeling, as given by
Eq. (3.3).

Now, suppose that, from the point of view of a1, the negotiations proceed
as follows (see also Figure 3.5):

1. At t = 0.0: λ1(t) = 1.0 a1 proposes ω10

2. At t = 0.05: a2 proposes ω4

3. At t = 0.10: λ1(t) = 0.9 a1 proposes ω9

4. At t = 0.15: a2 proposes ω6

5. At t = 0.20: λ1(t) = 0.8 a1 proposes ω8

6. At t = 0.30: a2 proposes ω2

7. At t = 0.50: λ1(t) = 0.5 a1 proposes ...

At time t = 0.50, our agent’s strategy prescribes that it should propose
ω5. Ideally, however, a1 would like to accept ω6 instead, because that would
yield more utility. The problem is that the AOP does not allow that, because
it only allows accepting the last received offer, which is ω2. Note that earlier
our agent did not accept ω6, because at the moment he received that offer, his
aspiration level was still at λ1(t) = 0.8 which was greater than u1(ω6) = 0.6.

The solution, is to override the bidding strategy and propose ω6 instead
of ω5. Since ω6 was already proposed before by a2, it is very likely that
a2 will now accept it, and therefore it should indeed be better for a1 to
propose ω6, than to propose ω5. We call this reproposing because the agent
is proposing an offer that was already proposed earlier by the opponent.
Algorithm 6 shows how this technique can be implemented on top of any
generic agent.

Definition 17. We say an agent ai reproposes an offer ω if ai proposes
it, while it was earlier already proposed by the other agent aj and ai itself
has not yet proposed it since then.
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Figure 3.5: The benefit of reproposing. The red dots represent proposals
made by a1, the red line represents a1’s aspiration level λ1 as a function of
time, and the black dots represent proposals made by a2. At time t = 0.5, the
bidding strategy of a1 suggests to propose ω5. However, it makes more sense
for a1 to propose ω6, which earlier was already proposed by a2. Note that
at that time a1 cannot accept ω6, because the AOP only allows accepting
the last received proposal, which was ω2.
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Exercise 7. Reproposing Adapt the agents that you have imple-
mented in the previous exercises to make them apply the reproposing
technique, as described in Algorithm 6.
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Algorithm 6 Generic BOA Agent for the alternating offers protocol that
applies reproposing.

Input:
Ω ▷ The offer space.
u1 ▷ The agent’s own utility function.
rv1 ▷ The agent’s own reservation value.
T ▷ The deadline.
M ▷ A model of the opponent.
t ▷ The current time.
h ▷ The history.
ωrec ▷ The offer last proposed by the opponent (if any).

//OPPONENT MODELING
1: M← updateOpponentModel(Ω, T,M, t, ωrec)

//BIDDING STRATEGY
2: ωnext ← biddingStrategy(Ω, u1, rv1, T,M, t, h)

//CHECK IF WE CAN FIND A BETTER OFFER TO REPROPOSE
//From the history, extract the set of all offers that have so far been
//proposed by this agent.

3: Ωprop ← getProposedOffers(h)
//From the history, extract the set of all offers that have so far been
//proposed by the opponent.

4: Ωrec ← getReceivedOffers(h)
5: if Ωrec \ Ωprop ̸= ∅ then
6: ωrep ← argmax{u1(ω) | ω ∈ Ωrec \ Ωprop}
7: if u1(ωrep) ≥ u1(ωnext) then
8: ωnext ← ωrep

9: end if
10: end if

//ACCEPTANCE STRATEGY
11: acceptOffer ← acceptanceStrategy(Ω, u1, T,M, t, h, ωrec, ωnext)

// RETURN SELECTED ACTION
//Finally, return the selected action (accept or propose).

12: if acceptOffer then
13: Return (a, ωrec)
14: else
15: Return (p, ωnext)
16: end if
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Chapter 4

Opponent Modeling

In this chapter we will discuss various techniques that have been proposed
in the literature to model the opponent.

We can distinguish between three types of opponent modeling:

1. Learning the opponent’s utility function, during the negotiation.
2. Learning the opponent’s strategy, during the negotiation.
3. Learning the opponent’s strategy from earlier negotiations.

We will discuss each of these types respectively in the following three sec-
tions.

Note that we do not discuss learning the opponent’s utility function from
earlier negotiations, because in most scenarios studied in the literature the
utility function would change with every new negotiation, so this wouldn’t
make sense.

4.1 Learning the Opponent’s Utility Function

In this section we will discuss several techniques that can be used by our
agent to learn the opponent’s utility function, based on the proposals that
it receives from its opponent.

Specifically, we will discuss the following techniques:

1. Bayesian learning.
2. Scalable Bayesian learning.
3. Frequency Analysis.

We should note that all these techniques assume that the negotiations take
place over a multi-issue domain and that that the opponent’s utility function

77
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u2 is linear, so it is of the form of Eq. (2.3). Therefore, these techniques are
not applicable to other types of negotiation domains.

4.1.1 Bayesian Learning

Bayesian learning [26] is one of the earliest and still most commonly used
techniques in automated negotiation to learn the opponent’s utility function.

The idea is as follows. Suppose that we have some given set of possible
utility functions U and, based on the proposals π1, π2, . . . , πk that our agent
has so far received from its opponent, we want to calculate the probability,
for each function u ∈ U , that that function u is the actual utility function u2
of the opponent. That is, for each u ∈ U we want to calculate a probability
P (u|π1, π2, . . . , πk).

4.1.1.1 Bayesian Learning in General

Bayesian learning is a technique that is much older than automated nego-
tiation and that has been used in many other applications. So, before we
explain how it can be applied to automated negotiation, we will here first
explain how it works in general.

The goal of Bayesian learning is, given a set of hypotheses Y , a sequence
of observations o⃗ = (o1, o2, . . . , ok), and a prior probability P (y) for each
hypothesis y ∈ Y , to calculate the posterior probability P (y|o⃗) that the
hypothesis y is true. Here, P (y) denotes the probability that we assign to
hypothesis y before making any observations, while P (y|o⃗) represents the
probability we assign to y after making the observations o1, o2, . . . , ok.

For example, suppose that somebody draws a card from a standard deck
of 52 playing cards, without showing it to us. Then, for us, the prior prob-
ability that this card is the ace of spades would be P (A♠) = 1

52 . Next,
suppose that this person tells us that the card is indeed a spades card. Now,
with this new information, the probability for us that it is the ace of spades
is suddenly four times higher: P (A♠ | ♠) = 1

13 .
In this example it was straightforward to calculate P (y|o) directly. How-

ever, in practice, it often happens that it is much easier to calculate P (o|y)
instead. In such cases we can use a theorem known as Bayes’ rule to express
P (y|o) in terms of P (o|y) and P (y).

To derive Bayes’ rule, we start from the following identities, which are
well-known from basic probability theory, and which hold for any arbitrary
‘events’ y and o:

P (y, o) = P (y | o) · P (o) = P (o | y) · P (y) (4.1)
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P (o) =
∑
y′∈Y

P (o | y′) · P (y′) (4.2)

From Equation (4.1) we can then directly derive:

P (y | o) =
P (o | y) · P (y)

P (o)

and then using Equation (4.2) we obtain Bayes’ rule:

P (y | o) =
P (o | y) · P (y)∑

y′∈Y P (o | y′) · P (y′)

Note that indeed, this rule allows us to express P (y|o) on the left-hand side
in terms of P (o|y) and P (y) on the right-hand side.

If there are multiple observations o1, o2, . . . , ok, then this becomes:

P (y | o1, o2, . . . , ok) =
P (o1, o2, . . . , ok | y) · P (y)∑

y′∈Y P (o1, o2, . . . , ok | y′) · P (y′)
(4.3)

and if it holds that for any given hypothesis y, the probabilities of observa-
tions o1, o2, . . . , ok, are all independent, then we can write this as:

P (y|o1, o2, . . . , ok) =
P (o1|y) · P (o2|y) · . . . · P (ok|y) · P (y)∑

y′∈Y P (o1|y′) · P (o2|y′) · . . . · P (ok|y′) · P (y′)

(4.4)
Now, suppose that we have already calculated, for each hypothesis y ∈ Y ,

the probability P (y|o1, o2, . . . , ok), which we will denote as P (y|o⃗). Next,
suppose we make a new observation ok+1. We now want to update the
probability of each hypothesis, taking into account this new observation.
That is, for all y ∈ Y we now want to calculate P (y|o⃗, ok+1), given P (y|o⃗).

To do this, first note that the denominator of Eq. (4.4) is just a nor-
malization constant that ensures that the sum of all probabilities equals 1,
which is the same for every hypothesis y ∈ Y . Ignoring this constant for a
moment, we can define the unnormalized probability P̃ (y|o⃗) as:

P̃ (y|o⃗) := P (y) · P (o1|y) · P (o2|y) · . . . · P (ok|y) (4.5)

which is just the numerator of the right-hand side of Eq. (4.4).
We now see that to update this unnormalized probability after a new

observation ok+1 we just need to multiply it with P (ok+1|y). That is:

P̃ (y|o⃗, ok+1) = P̃ (y|o⃗) · P (ok+1|y) (4.6)
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Then, after we have done this for every possible hypothesis y ∈ Y we can
calculate the true probabilities P (y|o⃗, ok+1) by normalizing:

P (y|o⃗, ok+1) =
P̃ (y|o⃗, ok+1)∑

y′∈Y ′ P̃ (y′|o⃗, ok+1)
(4.7)

4.1.1.2 Implementation

We will here discuss how Bayesian learning can be implemented.

First determine, for every y ∈ Y , the prior probability P (y). Since
initially we haven’t made any observations yet, o⃗ will be empty and thus by
Eq. (4.5) we have P̃ (y | o⃗) = P (y), for all y ∈ Y .

Then, every time we make a new observation ok+1, we take the following
steps:

1. For each y ∈ Y , calculate:

P̃ (y|o⃗, ok+1) = P̃ (y|o⃗) · P (ok+1|y)

2. Calculate the sum:

S =
∑
y∈Y

P̃ (y|o⃗, ok+1)

3. For each y ∈ Y , calculate:

P (y|o⃗, ok+1) =
1

S
· P̃ (y|o⃗, ok+1)

Note that this requires two lists of size |Y | each: one list to store all the
values of P̃ (y|o⃗) and one to store the values of P (y|o⃗).

However, this can be done a bit more efficiently. To see how, first note
that we can modify the implementation as follows.

Every time we make a new observation ok+1, we take the following steps:

1. Pick an arbitrary number Ck+1.

2. For each y ∈ Y , calculate:

P̃ (y|o⃗, ok+1) = P̃ (y|o⃗) · P (ok+1|y) · Ck+1

3. Calculate the sum:

S =
∑
y∈Y

P̃ (y|o⃗, ok+1)
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4. For each y ∈ Y , calculate:

P (y|o⃗, ok+1) =
1

S
· P̃ (y|o⃗, ok+1)

Note that the fact that in Step 2 each P̃ (y|o⃗, ok+1) is multiplied by a constant
Ck+1 does not affect the correctness of the calculations, because it means
the sum S in Step 3 will also be multiplied by the same constant, which
means that in step 4 this constant will cancel out against itself.

Furthermore, note that every time we make a new observation we can
choose a different value for this constant, and that instead of Eq. (4.5), we
are now calculating the unnormalized probability P̃ (y|o⃗) as:

P̃ (y|o⃗) = P (y) · C1 · P (o1|y) · C2 · P (o2|y) · . . . · Ck · P (ok|y) (4.8)

This means that if we choose each Ck+1 as follows:

Ck+1 =
1∏k

i=1Ck

· 1∑
y′∈Y P (y′|o⃗)

(4.9)

then, by combining Eq. (4.8) and Eq. (4.9) with Eq. (4.3), we see that for
every y ∈ Y we now have:

Ck+1 · P̃ (y|o⃗) = P (y|o⃗)

Knowing this, we can simplify our implementation, since it is now equiv-
alent to the following:

1. For each y ∈ Y , calculate:

P̃ (y|o⃗, ok+1) = P (y|o⃗) · P (ok+1|y) (4.10)

2. Calculate the sum:
S =

∑
y∈Y

P̃ (y|o⃗, ok+1)

3. For each y ∈ Y , calculate:

P (y|o⃗, ok+1) =
1

S
· P̃ (y|o⃗, ok+1)

While this looks very similar to our original implementation, the difference
is that step 1 now involves P (y|o⃗), rather than P̃ (y|o⃗). The great advantage
of this, is that we now only need one list of size |Y |. In Step 1 we can use
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this list to store the values of P̃ (y|o⃗, ok+1) and then in Step 3 we can simply
overwrite it to store the values of P (y|o⃗, ok+1). In our initial implementation
this was not possible, because we needed to keep the values of P̃ (y|o⃗, ok+1)
for the next iteration. Also note that we do not actually need to calculate
the constants Ck+1, since this last implementation does not use them. We
only mentioned these constants and Eq. (4.9) to show the correctness of the
last implementation.

4.1.1.3 Bayesian Learning for Automated Negotiation

We will now explain how Bayesian Learning can be applied in automated
negotiation to learn the utility function of the opponent.

In general, to apply Bayesian learning, we need the following ingredients:

� A set of possible observations O.
� A set of hypotheses Y .
� For any hypothesis y ∈ Y , a prior probability P (y).
� A formula that allows us to calculate, for any hypothesis y ∈ Y , and
any observation o ∈ O, the probability P (o | y).

In the context of automated negotiation, the observations that our agent
makes are the proposals that it receives from the opponent. Recall that such
a proposal π is defined as a tuple of the form (2, p, ω, t) for some offer ω and
some time t. So we have:

O = {(2, p, ω, t) | ω ∈ Ω, t ∈ [0, T ]}

The set of hypotheses would be some set of possible utility functions U
for the opponent. To stress that each hypothesis is now a utility function,
we will from now on use the symbol U to denote the set of hypotheses
instead of Y . We will discuss how to choose these utility functions below in
Section 4.1.1.4.

For the prior probabilities, the simplest approach is to assign them all an
equal probability. That is: P (u) = 1

|U | . However, depending on the domain
of application, you could also choose different prior probabilities that take
into account some background knowledge you may have about that specific
application.

Finally, we need to determine how to calculate P (π|u) for any arbitrary
proposal π ∈ O and utility function u ∈ U . That is, we have to make
an assumption about which proposals the opponent would make, if he had
utility function u. In other words, we have to make some assumptions about
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his strategy. In order to do this, the authors of [26] modeled the opponent’s
strategy as a linear time-based strategy. So, at any time t they expect the
opponent to propose an offer ω with normalized utility u2(ω) = 1 − c · t

T ,
where c is some constant between 0 and 1. However, since this is of course not
guaranteed to be exactly true, they assumed the opponent’s actual proposal
at any time t was drawn from the following probability distribution function:

P ((2, p, ω, t) | u) = N (u(ω) | 1− c · t
T

, σ) (4.11)

where the notation N (r|µ, σ) represents the probability of drawing the num-
ber r from a Gaussian probability distribution with mean µ and standard
deviation σ.

With this equation the Bayesian opponent model can be implemented
straightforwardly using Equations (4.10) and (4.7). An example implemen-
tation is given in Algorithm 7.

Finally, whenever our agent needs to have an estimation û2(ω) of the
opponent’s utility for some offer ω, it can be calculated by taking the ex-
pectation value over all hypothetical utility functions u ∈ U :

û2(ω) =
∑
u∈U

P (u|π⃗) · u(ω) (4.12)

where π⃗ is the list of all proposals our agent has so far received from the
opponent.

4.1.1.4 Choosing the Utility Hypotheses

We now know how to apply Bayesian learning for some given set of hypo-
thetical utility functions U . However, we still need to discuss how to choose
this set.

To do this, let us first assume that the negotiation domain is a multi-issue
domain with m issues and that we know that the opponent’s utility function
u2 is linear, so it can be expressed in the form of Eq. (2.3). Therefore, it
can be described in terms of its weights w1

2, w
2
2, . . . w

m
2 and its evaluation

functions v12, v
2
2, . . . v

m
2 .

To simplify the notation a bit, in the rest of this section we will suppress
the subscript 2 and just write wj instead of wj

2 and vj instead of vj2, since
we are exclusively talking about the opponent ’s utility anyway.

Furthermore, we will use the notation xj,l to denote the l-th option for
issue Ij . For example, if I1 represents a movie to choose:

I1 = {The Godfather ,Casablanca,The Big Lebowski}
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Algorithm 7 Opponent modeling algorithm based on Bayesian learning

Parameters:
σ ▷ Standard deviation of the Gaussian distribution.
c ▷ Concession speed of hypothesized opponent strategy.
U ▷ A set of hypothetical utility functions for the opponent.
Input:
T ▷ The deadline.
t ▷ The current time.
ωrec ▷ The last received offer.
probs ▷ A map that maps each u ∈ U to the probability

value P (u | π1, π2, . . . , πk) as calculated in the
previous iteration.

// Ensure that we initially assign the same probability to each
// hypothesis.

1: if this is our first turn then
2: for u ∈ U do
3: probs[u]← 1

|U |
4: end for
5: end if

// Update all the values in probs, given the newly received offer ωrec

// and simultaneously calculate the sum of all these values.
6: sum← 0
7: for u ∈ U do
8: probs[u]← probs[u] · N (u(ωrec) | 1− c · t

T , σ)
9: sum← sum+ probs[u]

10: end for

// Ensure that all probabilities are normalized.
11: for u ∈ U do
12: probs[u]← probs[u]/sum
13: end for

14: return probs
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Then we have:

x1,1 = The Godfather x1,2 = Casablanca x1,3 = The Big Lebowski

In addition, if vj is the evaluation function of agent a2 for issue Ij then we
use the notation vj,l as a shorthand for the value it assigns to option xj,l.
That is:

vj,l := vj2(xj,l)

So, to fully specify a linear utility function, we need to specify the value
of each weight wj and each vj,l. This means that if the domain has m issues
and each issue has s options, then we need to specify m+m · s parameters.
For example, if m = 4 and s = 3:

w1 = 0.3, w2 = 0.5, w3 = 0.1, w4 = 0.1

v1,1 = 0.0, v2,1 = 0.3, v3,1 = 0.3, v4,1 = 1.0

v1,2 = 0.4, v2,2 = 0.7, v3,2 = 0.0, v4,2 = 1.0

v1,3 = 1.0, v2,3 = 0.9, v3,3 = 0.0, v4,3 = 0.2

Now, one way to select a finite set of hypothetical utility functions, is to
restrict each of these parameters to only have values in some finite domain,
such as the set {0, 0.1, 0.2, . . . , 0.9, 1.0}. Since this set has 11
possible values, this gives us a total of 11m+m·s possible utility functions.
Unfortunately, however, this is an astronomically large number, even for
small domains with only m = 3 and s = 4. This is a problem because, as
can be seen in Algorithm 7, we need to loop over all elements of U , which
is clearly unfeasible for such a large set.

The authors of [26] therefore made some simplifying assumption to de-
crease this number. For example, they assumed that all issues are ordered
sets, and that the evaluation functions are triangular. That is, if xj,n de-
notes a2’s most preferred option of issue Ij , then they assume the evaluation
function vj first increases linearly from 0 to 1 until the option xj,n is reached,
after which it decreases linearly from 1 to 0. Figure 4.1 displays a few ex-
amples of such functions. Formally, for any issue Ij with size sj := |Ij | and
any integer n with 1 ≤ n ≤ sj , the triangular function Λn

j is defined as:

Λn
j (xj,l) =


l−1
n−1 if l < n

1 if l = n
sj−(l−1)
sj−(n−1) if l > n

(4.13)
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Figure 4.1: Some examples of triangular evaluation functions for an issue Ij
with 11 options.

This assumption of triangular evaluation functions greatly reduces the
size of the set U , because now to specify a single evaluation function vj ,
we only need to specify the most preferred option xj,n ∈ Ij , rather than
specifying a number vj,l for every single option xj,l ∈ Ij . This reduces the
number of possible evaluation functions for Ij from 11sj to just sj . And
therefore it reduces the total number of utility functions to 11m · sm (if all
issues have the same size s).

With these reductions the set U becomes small enough to apply Bayesian
learning in practice to small domains with just a few issues. However, since
the set U still grows exponentially with the number of issues, this approach
is still not feasible scenarios with many issues. Luckily however, the authors
of [26] also proposed a more scalable version of Bayesian opponent modeling,
which we will discuss next.

Exercise 8. Bayesian Learning. Implement the Bayesian learn-
ing algorithm discussed above. Next, run some negotiations with
your time-based agent and/or Tit-for-Tat agent from Exercises 2 and
4, but using this new opponent modeling algorithm, instead of the
DummyOpponentUtilityModel.
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4.1.2 Scalable Bayesian Learning

Before we explain the scalable version of Bayesian learning for automated
negotiation, let us first take a step back and focus again on the general case.

Let us assume we have some set of hypotheses Y and that each hy-
pothesis y ∈ Y can be decomposed into a number of sub-hypotheses: y =
(y1, y2, . . . , ym), so the hypothesis space can be decomposed as the Cartesian
product of a number of sub-hypothesis spaces: Y = Y 1 × Y 2 × · · · × Y m.

For example, the hypothesis that a given playing card is the ace of spaces
can be written as y = (A,♠).

Now, the probability P (y | o⃗) can be written as:

P (y | o⃗) =
m∏
j=1

P (yj | o⃗)

and the Bayesian update rule (4.10) can be applied to each sub-hypothesis
separately:

P̃ (yj | o⃗, ok+1) = P (yj | o⃗) · P (ok+1 | yj) (4.14)

The question, now, is how to calculate P (ok+1 | yj). After all, we typically
need the full hypothesis y to be able to calculate the probability of some
observation.

Before answering that question, let us first return to the topic of auto-
mated negotiation. In the previous section we have seen that each hypoth-
esis y corresponds to a utility function u, which is defined by a number of
parameters: for each issue Ij a weight wj and an evaluation function vj .

This means that the hypothesis space can be written as:

Y = Y 1
w × Y 2

w × · · · × Y m
w × Y 1

v × Y 2
v × · · · × Y m

v

where each Y j
w is a set of possible values for weight wj , and each Y j

v is a set
of possible evaluation functions defined over issue Ij .

For example, if we assume that each weight must be an integer multiple
of 0.1 and must be between 0 and 1, then we have:

Y 1
w = Y 2

w = · · · = Y m
w = {0, 0.1, 0.2, . . . , 0.9, 1.0}

Similarly, if we assume that each evaluation function must be a triangular
function (See Eq. (4.13)), then for each Y j

v we have:

Y j
v = {Λ1

j ,Λ
2
j , . . . ,Λ

sj
j }

where sj is the size of issue Ij .
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So a hypothesis y is now a tuple (w1, w2, . . . wm, v1, v2, . . . vm), where
each wj is a value from the set of weight hypotheses Y j

w and each vj is an
evaluation function from the set of evaluation hypotheses Y j

v . Furthermore,
each such hypothesis y corresponds to a utility function uy:

uy(ω) :=
m∑
j=1

wj · vj(ω)

Recall from Sec. 2.2.3.3 that we may abuse notation by writing vj(ω) when
we actually mean vj(xj), where xj is the j-th component of ω.

For a given hypothesis y and a given sequence of received proposals π⃗
we can now express the posterior probability as:

P (y|π⃗) =
m∏
j=1

P (wj |π⃗) ·
m∏
j=1

P (vj |π⃗)

and each probability P (wj |π⃗) and P (vj |π⃗) can be updated separately. For
example, for each weight wj the update rule (4.10) now becomes:

P̃ (wj |π⃗, πk+1) = P (wj |π⃗) · P (πk+1|wj) (4.15)

and similarly, for the evaluation functions vj :

P̃ (vj |π⃗, πk+1) = P (vj |π⃗) · P (πk+1|vj) (4.16)

Note that these two equations are just special cases of Eq. (4.14), spe-
cific to automated negotiation. So, our original question how to calcu-
late P (ok+1 | yj) can now be reformulated as the question how to calculate
P (πk+1|wj) and P (πk+1|vj).

To answer this, we first define for each issue Ij its expected weight wj

and its expected evaluation function vj as follows:

wj :=
∑

wj∈Y j
w

wj · P (wj | π⃗) (4.17)

vj(ω) :=
∑

vj∈Y j
v

vj(ω) · P (vj | π⃗) (4.18)

which in turn can be used to define the expected utility function u:

u(ω) :=
m∑
j=1

wj · vj(ω) (4.19)
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Next, this allows us to define, for any issue Il and weight-hypothesis
wl ∈ Y l

w a function u[wl] as follows:

u[wl](ω) :=

m∑
j=1
j ̸=l

wj · vj(ω) + wl · vl(ω)

That is, u[wl](ω) is the utility value calculated by taking, for each issue

Ij , the expectation value of the weight wj , and the expectation value of
vj(ω), except for issue Il, for which we use the hypothesized weight wl.

Similarly, we can define:

u[vl](ω) :=

m∑
j=1
j ̸=l

wj · vj(ω) + wl · vl(ω)

Then, for any wj ∈ Y j
w we can calculate P (πk+1|wj) as in Eq. (4.11).

but with the variable u replaced by u[wj ]. That is:

P ((2, p, ω, t) | wj) := N (u[wj ](ω) | 1− c · t
T

, σ) (4.20)

Similarly, P (πk+1|vj) can be calculated as:

P ((2, p, ω, t) | vj) := N (u[vj ](ω) | 1− c · t
T

, σ) (4.21)

See Algorithm 8 for an implementation.

It should be noted, however, that these equations are just approxima-
tions. They are based on the assumption that the current expected utility
function u is already a good approximation to the opponent’s true utility
function u2.

While scalable Bayesian learning largely solves the problem of scalability,
the main disadvantage is that we need to make a lot of assumptions. For
example, we need to assume that the opponent’s utility function is linear,
that the issues are ordered and that the opponent has triangular evaluation
functions. Furthermore, it depends on the chosen model of the opponent’s
bidding strategy and on the chosen standard deviation σ for the Gaussian
distribution.
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Algorithm 8 Opponent modeling algorithm based on Scalable Bayesian
learning. This function is called every time a new proposal is received, in
order to update our agent’s model of the opponent’s utility function.

Parameters:
σ ▷ Standard deviation of the Gaussian distribution.
c ▷ Concession speed of hypothesized opponent strategy.
Input:
T ▷ The deadline.
t ▷ The current time.
ωrec ▷ The last received offer.
weight hyps ▷ A double array that contains for each issue Ij a list of possible

weights. So, weight hyps[j] is a single array that represents Y j
w.

weight probs ▷ A double array that contains for each issue Ij and each
possible weight wj ∈ Y j

w a probability value P (wj |π⃗).
eval hyps ▷ A double array that contains for each issue Ij a list of possible

evaluation functions. So, eval hyps[j] is a single array that
represents Y j

v .
eval probs ▷ A double array that contains for each issue Ij and each

possible evaluation function vj ∈ Y j
v a probability value P (vj |π⃗).

// Calculate the values of wj and vj(ωrec) according to Eqs. (4.17) and (4.18)
1: for each issue Ij of the domain do

2: wj ←
∑|Y j

w|
l=1 weight hyps[j][l] · weight probs[j][l]

3: vj ←
∑|Y j

v |
l=1 eval hyps[j][l] · eval probs[j][l](ωrec)

4: end for

5: for each issue Ij of the domain do

6: for l ∈ {0, 1, . . . , |Y j
w| − 1} do

7: u[wj ] ←
∑m

i=1,i̸=j w
i · vi + weight hyps[j][l] · vj

8: weight probs[j][l]←
weight probs[j][l] · N (u[wj ] | 1− c · t

T , σ) // Eq. (4.15)
9: end for

10: normalize(weight probs[j])

11: for l ∈ {0, 1, . . . , |Y j
v | − 1} do

12: u[vj ] ←
∑m

i=1,i̸=j w
i · vi + wj · eval hyps[j][l](ωrec)

13: eval probs[j][l]←
eval probs[j][l] · N (u[vj ] | 1− c · t

T , σ) // Eq. (4.16)
14: end for
15: normalize(eval probs[j])

16: end for
17: return (weight probs, eval probs)
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Exercise 9. Scalable Bayesian Learning. Implement the scal-
able Bayesian learning algorithm discussed in this section. Next,
run some negotiations with your time-based agent and/or Tit-for-Tat
agent from Exercises 2 and 4, but using this new opponent model-
ing algorithm, instead of the dummy opponent model or the regular
Bayesian learning algorithm from Exercise 8.

4.1.3 Frequency Analysis

In this section we will discuss a simpler alternative to Bayesian learning,
called frequency analysis, which is based on the idea that the opponent’s
evaluation functions and weights can be estimated from the frequency with
which the opponent proposes the respective options for each issue. While
this method is perhaps not as elegant or sophisticated as Bayesian learning,
it turns out that in practice it often performs equally well, or even better [5].

The basic idea of frequency analysis is that for any issue Ij and any

option xj,l ∈ Ij of that issue, the value vj2(xj,l) that the opponent assigns
to it can be estimated from the number of times that the opponent makes
proposals containing that option.

For example, in the scenario that Alice and Bob are negotiating about a
visit to the cinema, if Alice keeps making proposals that include the movie
The Godfather, then that is a clear indication that Alice probably likes that
movie very much.

Furthermore, to estimate the opponent’s weights wj
2, the idea is that if

the opponent proposes many different options for the same issue Ij , then
this is an indication that that issue is probably not very important to the
opponent, so the weight wj

2 should have a low value.
For example, if Alice first proposes to see the movie at 18:00, but then

proposes to see it at 20:00, and then proposes to see it at 22:00, then ap-
parently she does not really care much about the time at which the movie
starts.

As usual, there are many ways how these ideas can be implemented. As
an example, we here present the implementation by van Galen Last [41].1

Let k denote the total number of proposals made by the opponent:

k := |{(i, η, ω, t) ∈ h | i = 2 ∧ η = p}|
1The cited paper itself actually does not explain this opponent modeling al-

gorithm, but it can be found in the source code of their agent, which can
be found at https://tracinsy.ewi.tudelft.nl/pubtrac/Genius/browser/src/main/

java/agents/anac/y2010/AgentSmith

https://tracinsy.ewi.tudelft.nl/pubtrac/Genius/browser/src/main/java/agents/anac/y2010/AgentSmith
https://tracinsy.ewi.tudelft.nl/pubtrac/Genius/browser/src/main/java/agents/anac/y2010/AgentSmith
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and let xj,l denote the l-th option for issue Ij . Furthermore, let fh(xj,l)
denote the number of times that the opponent has proposed an offer that
contained xj,l:

fh(xj,l) := |{(i, η, ω, t) ∈ h | i = 2 ∧ η = p ∧ xj,l ∈ ω}|

Then, each value vj2(xj,l) can be estimated as the number of times the option
xj,l has been proposed by the opponent, divided by the total number of
proposals made by the opponent:

v̂j2(xj,l) =
fh(xj,l)

k

and each weight wj
2 can be estimated as:

ŵj
2 =

max {fh(xj,l) | xj,l ∈ Ij}
k

Note that this approach in general will not yield a normalized utility
function, so you may optionally still want to apply some normalization to
these weights and evaluation functions.

Exercise 10. Frequency Analysis. Implement the frequency anal-
ysis algorithm discussed in this section. Next, run some negotiations
with your time-based agent and/or Tit-for-Tat agent from Exercises 2
and 4, but using this new opponent modeling algorithm.

4.2 Learning the Opponent’s Strategy

In this section we will discuss how to model the opponent’s bidding strategy,
based on the proposals he makes during the negotiations. More precisely,
given the set of proposals that our agent received from the opponent until
time some time t, we aim to predict which offers the opponent will propose
later on, between time t and the deadline.

The ability to make such predictions is essential for the implementation
of an adaptive negotiation strategy, as explained in Section 3.2.2.

To formalize this, let

π1 = (2, p, ω1, t1), π2 = (2, p, ω2, t2), . . . , πk = (2, p, ωk, tk)
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denote the sequence of proposals that our agent has received from its oppo-
nent and let z1, z2, . . . , zk denote their corresponding utility values, for our
agent. That is:

zi := u1(ωi)

Then our goal is to implement an algorithm that can take as its input the
sequence

(z1, t1), (z2, t2), . . . , (zk, tk)

plus some arbitrary time tk+1 in the future, and that outputs a prediction
for the corresponding utility value zk+1.

However, in general it is unlikely that we can make such a prediction
perfectly, so rather than outputting the actual value zk+1, a typical opponent
modeling algorithm would instead output a probability distribution P (zk+1)
over all the possible values of zk+1.

Many different techniques to do this have been proposed in the literature.
For example, Agent K [29], the winner of ANAC 2010, used an extrapola-
tion algorithm based on the average and standard deviation of the values
of zi. Other agents used non-linear regression (IAMhaggler [45]), or wavelet
decomposition and cubic smoothing splines (OMAC [12]). Here, how-
ever, we will only focus on the technique of Gaussian Processes (IAMHag-
gler2011 [44]).

4.2.1 Gaussian Processes

Due to the technical nature of this topic we cannot discuss Gaussian pro-
cesses in detail, so will only give a global idea of how this technique works.
For a more detailed discussion we refer to [42] or [11].

The idea behind Gaussian processes is that we assume that at any given
time the probability that the opponent will propose an offer ω with utility
u1(ω) = z is given by a Gaussian distribution:

P (z) = N (z | µ, σ) =
1√
2πσ

e−
(z−µ)2

2σ2

Now, in order to be able to use this for our purposes, we first need to
determine an expression for the probability that the opponent proposes a
certain sequence of offers with utility values z1, z2, . . . , zk respectively.

If we could assume that each offer is drawn independently from the same
normal distribution, then this would be easy, as we could simply multiply
the probabilities. This would yield the following expression:

P (z1, z2, . . . , zk) =
1

(2π)k/2
· 1

σk
· e−

(z1−µ)2+(z2−µ)2+···+(zk−µ)2

2σ2
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which can be rewritten using vector-notation:

P (z⃗) =
1

(2π)k/2
· 1

σk
· e−

1
2σ2 (z⃗−µ⃗)T I(z⃗−µ⃗) (4.22)

where I is the k × k identity matrix and µ⃗ = (µ, µ, . . . , µ)T is the k-
dimensional column vector containing just k copies of the number µ.

However, the offers proposed by the opponent are typically not inde-
pendent. After all, it is fair to assume that the opponent is following some
negotiation strategy that concedes over time with respect to his utility u2
and that this utility function is at least to some extent correlated with our
own utility u1.

For example, in the extreme case that the opponent follows a strictly
monotonic bidding strategy and that the negotiation domain is a split-the-
pie domain, then our agent would perceive the offers it receives from the
opponent as strictly increasing over time, i.e. z1 ≤ z2 ≤ · · · ≤ zk. So, their
values are clearly not independent.

Of course, in practice many negotiation scenarios will not be split-the-pie
domains in which the utility functions are that strongly correlated. Never-
theless, it is still reasonable to assume that there will at least be some
correlation. In fact, we have to make this assumption, because if there is no
correlation between the two utility functions at all, then there would be no
way for our agent to make any predictions based on the received proposals.
After all, the utility values of the received proposals would just appear as a
completely random sequence with no pattern whatsoever.

We will therefore assume that, in general, two consecutive proposals
πi and πi+1 will often have similar values: zi ≈ zi+1. To state this more
formally, we will assume that the closer two proposals πi and πj are to
each other in time, the stronger the correlation between the corresponding
random variables zi and zj .

Whenever a sequence of Gaussian random variables is not independent,
we can model their joint distribution by replacing the identity matrix in
Eq. (4.22) with some other matrix K (which has to be symmetric and posi-
tive semi-definite) so that the expression for the joint probability becomes:

P (z⃗) =
1

(2π)k/2
· 1

|K|1/2
· e−

1
2
(z⃗−µ⃗)TK−1(z⃗−µ⃗) (4.23)

where |K| is the determinant of K.
The fact that this this matrix indeed introduces a dependency between

each pair of variables zi and zj can be seen clearly from Figure 4.2. In this
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(a) Countour plot of a multi-variate
Gaussian distribution with identity
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Gaussian distribution with alterna-
tive covariance matrix.

Figure 4.2: Multi-variate Gaussian distributions.

figure we have drawn two contour plots for a Gaussian distribution over
just two variables z1 and z2. Figure 4.2a shows the case where K is just
the identity matrix, so this corresponds to Eq. (4.22). We see that for any
arbitrary value of z1, the probability distribution for z2 is maximized at the
same value z2 = 0.5 (indicated with a red line). Similarly, for any value of z2
the probability distribution for z1 is maximized at the same value z1 = 0.5.
In other words, the probability distribution for z2 does not depend on z1
and vice versa.

On the other hand, in Figure 4.2b, where we have drawn the contour
plot of a Gaussian distribution with an alternative matrix K we see that as
z1 increases, the value of z2 with maximum probability also increases (again,
indicated with a red line). That is, the larger the value of z1, the greater
the expectation value of z2.

Furthermore, note that if we use Eq. (4.23) to calculate the covariance

E
(
(zi−µ) ·(zj−µ)

)
between any two variables zi and zj then the result will

be exactly the element Ki,j of the matrix K. For this reason, K is called the
covariance matrix. From this it follows immediately that if K is the identity
matrix, then there is no covariance among any two different variables zi and
zj , which means that they are indeed independent.

The question now, is how to choose the correct matrix K. For this, we
use a so-called kernel function. A kernel function is a function κ : R2 → R
that represents how the correlation between any two variables zi and zj
depends on the times ti and tj . That is, we set:

Ki,j := κ(ti, tj) (4.24)
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where Ki,j is an entry of the matrix K, representing the covariance between
variables zi and zj , and ti and tj are the times of the proposals πi and πj .

Of course, we have now only replaced our original question “How do we
select the correct covariance matrix?” by a new question: “How do we select
the correct kernel function?”.

We will not go into the details of how to select the best such kernel
function. We will just mention that it should be consistent with our re-
quirement that the smaller the difference between ti and tj , the more the
two variables zi and zj should be correlated. So, this should be reflected in
the kernel function: the smaller |ti − tj |, the greater κ(ti, tj). Furthermore,
let us mention that Williams et al. [42] used a so-called Matérn kernel.

Once we have determined the covariance matrix, we know the expression
for P (z⃗). The next step, is to use this to calculate an expression for P (zk+1 |
z1, z2, . . . , zk). This is indeed the expression that we are looking for, because
it calculates the probability of some future value zk+1, given the observed
sequence z1, z2, . . . , zk.

The expression for P (zk+1 | z1, z2, . . . , zk) can be obtained directly from
the expression for P (z⃗) using straightforward, but somewhat tedious, alge-
bra. We will not go into the details of this calculation here, but the key
point is that P (zk+1 | z1, z2, . . . , zk) will again be a Gaussian distribution.
Therefore, this distribution is determined by just two parameters µ and σ,
representing the mean and standard deviation.

Note that, technically, the probability P (zk+1 | z1, z2, . . . , zk) also de-
pends on the times t1, t2, . . . , tk, of the received proposals, as well as on the
chosen future time tk+1, because they determine the covariance matrix K,
through the kernel function κ, as in Eq. (4.24). We may therefore write this
probability more correctly as P (zk+1 | π1, π2, . . . , πk, tk+1)

Finally, let us mention that instead of using all received proposals from
the opponent as their input, Williams et al. [42] divided time into a number
of time-windows and only used the proposal with highest utility from each
time window. This has the advantage that it reduces noise in the data, and
it also reduces the size of the input data, which in turn reduces the required
computation time.

4.2.2 Choosing the Optimal Target Value for an Adaptive
Negotiation Strategy

The typical use case for Gaussian processes, is to determine an optimal
target value β∗ for an adaptive negotiation strategy. Let us here explain in
more detail how that can be done.
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In order to do this, we first have to select a time point tk+1 which is
close to the deadline T . This will allow us to predict the utility value of
the last offer that the opponent will propose to us. The output of our
Gaussian process algorithm will then consist of the two parameters µ and σ,
which are the mean and the standard deviation of the Gaussian probability
distribution that represents the probability that the opponent will propose
an offer ωk+1 at time tk+1 with utility zk+1:

P (zk+1 | π1, π2, . . . πk, tk+1) = N (zk+1 | µ, σ)

Now, let us suppose for a moment that we know the exact value zk+1 of
the offer ωk+1 that the opponent will propose at time tk+1, and furthermore
that we have a good approximation û2 of the opponent’s utility function,
so we can ensure that our own proposals are Pareto-optimal. In that case
we can assume that the opponent will accept any Pareto-optimal offer ω for
which u1(ω) < zk+1. After all, if, for our agent, the offer ω is worse than
the offer ωk+1 that the opponent would propose, then by Pareto-optimality,
for the opponent, the offer ω would be better than the offer ωk+1 that he
would propose. So, it is fair to assume that the opponent would be willing
to accept ω.

Of course, in reality we only have a probability distribution for zk+1, so
we can calculate, for any offer ω with utility u1(ω) = z the probability that
the opponent will accept it, by integrating over all values of zk+1 that are
greater than z. That is:

Pa(z) =

∫ ∞

z
P (zk+1 | π1, π2, . . . πk) dzk+1

where Pa(z) denotes the probability that a2 would accept an offer ω with
utility u1(ω) = z.

Let us now make the pessimistic assumption that if our target value is
β, then we will indeed need to concede all the way to that value and we will
not be able to get any agreement with higher utility than that. Therefore,
our expected utility would be given by β ·Pa(β). That is, the utility β in case
of agreement, multiplied by the probability that the opponent will indeed
accept such an agreement. We can now determine our optimal target value
β∗ as follows:

β∗ = argmax
β

β · Pa(β)
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4.3 Learning the Opponent’s Strategy from Pre-
vious Negotiation Sessions

COMING SOON!
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Maestre, Miguel A. López-Carmona, Takayuki Ito, Minjie Zhang, Quan
Bai, and Katsuhide Fujita, editors, Novel Insights in Agent-based Com-
plex Automated Negotiation, volume 535 of Studies in Computational
Intelligence, pages 151–162. Springer, 2014.


	Introduction
	Characteristics of Negotiation
	History of Automated Negotiation

	Basic Negotiations
	Informal Description
	Formal Model
	The Offer Space
	The Alternating Offers Protocol
	Utility Functions
	Reservation Values
	Discount Factors
	Knowledge
	Negotiation Domains

	Pareto Optimality and Individual Rationality
	Competitiveness
	Simulation Framework

	Negotiation Strategies
	The BOA Model
	Bidding Strategies
	Time-Based Strategies
	Adaptive Strategies
	Imitative Strategies

	Acceptance Strategies
	Reproposing

	Opponent Modeling
	Learning the Opponent's Utility Function
	Bayesian Learning
	Scalable Bayesian Learning
	Frequency Analysis

	Learning the Opponent's Strategy
	Gaussian Processes
	Choosing the Optimal Target Value for an Adaptive Negotiation Strategy

	Learning the Opponent's Strategy from Previous Negotiation Sessions

	Game Theory
	Normal-Form Games
	Extensive-Form Games
	Automated Negotiation as a Game
	Bargaining Solutions

	Evaluation of Negotiation Algorithms
	Advanced Negotiations
	Multilateral Negotiation
	Negotiation and Search
	Non-linear and Computationally Complex Utility Functions


